Metamath Proof Explorer


Theorem dvnres

Description: Multiple derivative version of dvres3a . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion dvnres ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = 0 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) )
2 1 dmeqd ( 𝑥 = 0 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) )
3 2 eqeq1d ( 𝑥 = 0 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 ) )
4 fveq2 ( 𝑥 = 0 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) )
5 1 reseq1d ( 𝑥 = 0 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) )
6 4 5 eqeq12d ( 𝑥 = 0 → ( ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) )
7 3 6 imbi12d ( 𝑥 = 0 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) )
8 7 imbi2d ( 𝑥 = 0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) ) )
9 fveq2 ( 𝑥 = 𝑛 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
10 9 dmeqd ( 𝑥 = 𝑛 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
11 10 eqeq1d ( 𝑥 = 𝑛 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) )
12 fveq2 ( 𝑥 = 𝑛 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) )
13 9 reseq1d ( 𝑥 = 𝑛 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) )
14 12 13 eqeq12d ( 𝑥 = 𝑛 → ( ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) )
15 11 14 imbi12d ( 𝑥 = 𝑛 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) )
16 15 imbi2d ( 𝑥 = 𝑛 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) )
17 fveq2 ( 𝑥 = ( 𝑛 + 1 ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) )
18 17 dmeqd ( 𝑥 = ( 𝑛 + 1 ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) )
19 18 eqeq1d ( 𝑥 = ( 𝑛 + 1 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) )
20 fveq2 ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) )
21 17 reseq1d ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) )
22 20 21 eqeq12d ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) )
23 19 22 imbi12d ( 𝑥 = ( 𝑛 + 1 ) → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) )
24 23 imbi2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) )
25 fveq2 ( 𝑥 = 𝑁 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) )
26 25 dmeqd ( 𝑥 = 𝑁 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) )
27 26 eqeq1d ( 𝑥 = 𝑁 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) )
28 fveq2 ( 𝑥 = 𝑁 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) )
29 25 reseq1d ( 𝑥 = 𝑁 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) )
30 28 29 eqeq12d ( 𝑥 = 𝑁 → ( ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) )
31 27 30 imbi12d ( 𝑥 = 𝑁 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) )
32 31 imbi2d ( 𝑥 = 𝑁 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) )
33 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
34 33 adantr ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → 𝑆 ⊆ ℂ )
35 pmresg ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) )
36 dvn0 ( ( 𝑆 ⊆ ℂ ∧ ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) = ( 𝐹𝑆 ) )
37 34 35 36 syl2anc ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) = ( 𝐹𝑆 ) )
38 ssidd ( 𝑆 ∈ { ℝ , ℂ } → ℂ ⊆ ℂ )
39 dvn0 ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 )
40 38 39 sylan ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 )
41 40 reseq1d ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) = ( 𝐹𝑆 ) )
42 37 41 eqtr4d ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) )
43 42 a1d ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) )
44 cnelprrecn ℂ ∈ { ℝ , ℂ }
45 simplr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) )
46 simprl ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑛 ∈ ℕ0 )
47 dvnbss ( ( ℂ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 )
48 44 45 46 47 mp3an2i ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 )
49 simprr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 )
50 ssidd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ℂ ⊆ ℂ )
51 dvnp1 ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
52 50 45 46 51 syl3anc ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
53 52 dmeqd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
54 49 53 eqtr3d ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 = dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
55 dvnf ( ( ℂ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ )
56 44 45 46 55 mp3an2i ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ )
57 cnex ℂ ∈ V
58 57 57 elpm2 ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) )
59 58 simprbi ( 𝐹 ∈ ( ℂ ↑pm ℂ ) → dom 𝐹 ⊆ ℂ )
60 45 59 syl ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ ℂ )
61 48 60 sstrd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ )
62 50 56 61 dvbss ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
63 54 62 eqsstrd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
64 48 63 eqssd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 )
65 64 expr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑛 ∈ ℕ0 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) )
66 65 imim1d ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) )
67 oveq2 ( ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) )
68 34 adantr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑆 ⊆ ℂ )
69 35 adantr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) )
70 dvnp1 ( ( 𝑆 ⊆ ℂ ∧ ( 𝐹𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) ) )
71 68 69 46 70 syl3anc ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) ) )
72 52 reseq1d ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) )
73 simpll ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑆 ∈ { ℝ , ℂ } )
74 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
75 74 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
76 unicntop ℂ = ( TopOpen ‘ ℂfld )
77 76 ntrss2 ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
78 75 61 77 sylancr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
79 74 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
80 79 toponrestid ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
81 50 56 61 80 74 dvbssntr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
82 54 81 eqsstrd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
83 48 82 sstrd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
84 78 83 eqssd ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
85 76 isopn3 ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
86 75 61 85 sylancr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) )
87 84 86 mpbird ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) )
88 64 54 eqtr2d ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) )
89 74 dvres3a ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) ∧ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ∧ dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) )
90 73 56 87 88 89 syl22anc ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) )
91 72 90 eqtr4d ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) )
92 71 91 eqeq12d ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ↔ ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) )
93 67 92 syl5ibr ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) )
94 66 93 animpimp2impd ( 𝑛 ∈ ℕ0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) )
95 8 16 24 32 43 94 nn0ind ( 𝑁 ∈ ℕ0 → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) )
96 95 com12 ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝑁 ∈ ℕ0 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) )
97 96 3impia ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) )
98 97 imp ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) )