Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ) |
2 |
1
|
dmeqd |
⊢ ( 𝑥 = 0 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) ) |
5 |
1
|
reseq1d |
⊢ ( 𝑥 = 0 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) |
7 |
3 6
|
imbi12d |
⊢ ( 𝑥 = 0 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
10 |
9
|
dmeqd |
⊢ ( 𝑥 = 𝑛 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑥 = 𝑛 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) |
13 |
9
|
reseq1d |
⊢ ( 𝑥 = 𝑛 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) |
15 |
11 14
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
18 |
17
|
dmeqd |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) ) |
21 |
17
|
reseq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) |
22 |
20 21
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) |
23 |
19 22
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
26 |
25
|
dmeqd |
⊢ ( 𝑥 = 𝑁 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑥 = 𝑁 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ) |
29 |
25
|
reseq1d |
⊢ ( 𝑥 = 𝑁 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
30 |
28 29
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) |
31 |
27 30
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) ) |
33 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
34 |
33
|
adantr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → 𝑆 ⊆ ℂ ) |
35 |
|
pmresg |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
36 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( 𝐹 ↾ 𝑆 ) ) |
37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( 𝐹 ↾ 𝑆 ) ) |
38 |
|
ssidd |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ℂ ⊆ ℂ ) |
39 |
|
dvn0 |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
40 |
38 39
|
sylan |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
41 |
40
|
reseq1d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) = ( 𝐹 ↾ 𝑆 ) ) |
42 |
37 41
|
eqtr4d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) |
43 |
42
|
a1d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) |
44 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
45 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
46 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑛 ∈ ℕ0 ) |
47 |
|
dvnbss |
⊢ ( ( ℂ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
48 |
44 45 46 47
|
mp3an2i |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
49 |
|
simprr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) |
50 |
|
ssidd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ℂ ⊆ ℂ ) |
51 |
|
dvnp1 |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
52 |
50 45 46 51
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
53 |
52
|
dmeqd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
54 |
49 53
|
eqtr3d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 = dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
55 |
|
dvnf |
⊢ ( ( ℂ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) |
56 |
44 45 46 55
|
mp3an2i |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) |
57 |
|
cnex |
⊢ ℂ ∈ V |
58 |
57 57
|
elpm2 |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ) |
59 |
58
|
simprbi |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) → dom 𝐹 ⊆ ℂ ) |
60 |
45 59
|
syl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ ℂ ) |
61 |
48 60
|
sstrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) |
62 |
50 56 61
|
dvbss |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
63 |
54 62
|
eqsstrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
64 |
48 63
|
eqssd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) |
65 |
64
|
expr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑛 ∈ ℕ0 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) ) |
66 |
65
|
imim1d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) |
67 |
|
oveq2 |
⊢ ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) |
68 |
34
|
adantr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑆 ⊆ ℂ ) |
69 |
35
|
adantr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
70 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) ) |
71 |
68 69 46 70
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) ) |
72 |
52
|
reseq1d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) ) |
73 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
74 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
75 |
74
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
76 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
77 |
76
|
ntrss2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
78 |
75 61 77
|
sylancr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
79 |
74
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
80 |
79
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
81 |
50 56 61 80 74
|
dvbssntr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
82 |
54 81
|
eqsstrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
83 |
48 82
|
sstrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
84 |
78 83
|
eqssd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
85 |
76
|
isopn3 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
86 |
75 61 85
|
sylancr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
87 |
84 86
|
mpbird |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ) |
88 |
64 54
|
eqtr2d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
89 |
74
|
dvres3a |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) ∧ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ∧ dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) ) |
90 |
73 56 87 88 89
|
syl22anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) ) |
91 |
72 90
|
eqtr4d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) |
92 |
71 91
|
eqeq12d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ↔ ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) |
93 |
67 92
|
syl5ibr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) |
94 |
66 93
|
animpimp2impd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) ) |
95 |
8 16 24 32 43 94
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) |
96 |
95
|
com12 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝑁 ∈ ℕ0 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) |
97 |
96
|
3impia |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) |
98 |
97
|
imp |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |