Step |
Hyp |
Ref |
Expression |
1 |
|
dvntaylp.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvntaylp.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
dvntaylp.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
dvntaylp.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
5 |
|
dvntaylp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
dvntaylp.b |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 𝑀 ) ) ) |
7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
8 |
4 7
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
9 |
|
eluzfz2b |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) ↔ 𝑀 ∈ ( 0 ... 𝑀 ) ) |
10 |
8 9
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 0 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑚 = 0 → ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) = ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑚 = 0 → ( 𝑀 − 𝑚 ) = ( 𝑀 − 0 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑚 = 0 → ( 𝑁 + ( 𝑀 − 𝑚 ) ) = ( 𝑁 + ( 𝑀 − 0 ) ) ) |
16 |
|
eqidd |
⊢ ( 𝑚 = 0 → 𝐵 = 𝐵 ) |
17 |
13 15 16
|
oveq123d |
⊢ ( 𝑚 = 0 → ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) = ( ( 𝑁 + ( 𝑀 − 0 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) 𝐵 ) ) |
18 |
11 17
|
eqeq12d |
⊢ ( 𝑚 = 0 → ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ↔ ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 0 ) = ( ( 𝑁 + ( 𝑀 − 0 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) 𝐵 ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑚 = 0 → ( ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ) ↔ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 0 ) = ( ( 𝑁 + ( 𝑀 − 0 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) 𝐵 ) ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) = ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑀 − 𝑚 ) = ( 𝑀 − 𝑛 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑁 + ( 𝑀 − 𝑚 ) ) = ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) |
25 |
|
eqidd |
⊢ ( 𝑚 = 𝑛 → 𝐵 = 𝐵 ) |
26 |
22 24 25
|
oveq123d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) |
27 |
20 26
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ↔ ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ) ↔ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) = ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑀 − 𝑚 ) = ( 𝑀 − ( 𝑛 + 1 ) ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑁 + ( 𝑀 − 𝑚 ) ) = ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ) |
34 |
|
eqidd |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → 𝐵 = 𝐵 ) |
35 |
31 33 34
|
oveq123d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ) |
36 |
29 35
|
eqeq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ↔ ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ) ) |
37 |
36
|
imbi2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ) ↔ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) ) |
39 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) = ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ) |
41 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 𝑀 − 𝑚 ) = ( 𝑀 − 𝑀 ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝑁 + ( 𝑀 − 𝑚 ) ) = ( 𝑁 + ( 𝑀 − 𝑀 ) ) ) |
43 |
|
eqidd |
⊢ ( 𝑚 = 𝑀 → 𝐵 = 𝐵 ) |
44 |
40 42 43
|
oveq123d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) = ( ( 𝑁 + ( 𝑀 − 𝑀 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) |
45 |
38 44
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ↔ ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) = ( ( 𝑁 + ( 𝑀 − 𝑀 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) ) |
46 |
45
|
imbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑁 + ( 𝑀 − 𝑚 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑚 ) ) 𝐵 ) ) ↔ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) = ( ( 𝑁 + ( 𝑀 − 𝑀 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) ) ) |
47 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
48 |
|
mapsspm |
⊢ ( ℂ ↑m ℂ ) ⊆ ( ℂ ↑pm ℂ ) |
49 |
5 4
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 𝑀 ) ∈ ℕ0 ) |
50 |
|
eqid |
⊢ ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) = ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) |
51 |
1 2 3 49 6 50
|
taylpf |
⊢ ( 𝜑 → ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) : ℂ ⟶ ℂ ) |
52 |
|
cnex |
⊢ ℂ ∈ V |
53 |
52 52
|
elmap |
⊢ ( ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ∈ ( ℂ ↑m ℂ ) ↔ ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) : ℂ ⟶ ℂ ) |
54 |
51 53
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ∈ ( ℂ ↑m ℂ ) ) |
55 |
48 54
|
sselid |
⊢ ( 𝜑 → ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ∈ ( ℂ ↑pm ℂ ) ) |
56 |
|
dvn0 |
⊢ ( ( ℂ ⊆ ℂ ∧ ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 0 ) = ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) |
57 |
47 55 56
|
syl2anc |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 0 ) = ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) |
58 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
59 |
1 58
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
60 |
52
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
61 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
62 |
60 1 2 3 61
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
63 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
64 |
59 62 63
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
65 |
64
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) = ( 𝑆 Tayl 𝐹 ) ) |
66 |
4
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
67 |
66
|
subid1d |
⊢ ( 𝜑 → ( 𝑀 − 0 ) = 𝑀 ) |
68 |
67
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 + ( 𝑀 − 0 ) ) = ( 𝑁 + 𝑀 ) ) |
69 |
|
eqidd |
⊢ ( 𝜑 → 𝐵 = 𝐵 ) |
70 |
65 68 69
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑁 + ( 𝑀 − 0 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) 𝐵 ) = ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) |
71 |
57 70
|
eqtr4d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 0 ) = ( ( 𝑁 + ( 𝑀 − 0 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) 𝐵 ) ) |
72 |
71
|
a1i |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 0 ) = ( ( 𝑁 + ( 𝑀 − 0 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ) 𝐵 ) ) ) |
73 |
|
oveq2 |
⊢ ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) → ( ℂ D ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) ) = ( ℂ D ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) ) |
74 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ℂ ⊆ ℂ ) |
75 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ∈ ( ℂ ↑pm ℂ ) ) |
76 |
|
elfzouz |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑀 ) → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
77 |
76
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
78 |
77 7
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑛 ∈ ℕ0 ) |
79 |
|
dvnp1 |
⊢ ( ( ℂ ⊆ ℂ ∧ ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) ) ) |
80 |
74 75 78 79
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) ) ) |
81 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
82 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
83 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) |
84 |
81 82 78 83
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) |
85 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
86 |
81 82 78 85
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
87 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → dom 𝐹 = 𝐴 ) |
89 |
86 88
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ 𝐴 ) |
90 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ⊆ 𝑆 ) |
91 |
89 90
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ 𝑆 ) |
92 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑁 ∈ ℕ0 ) |
93 |
|
fzofzp1 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑀 ) → ( 𝑛 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑛 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
95 |
|
fznn0sub |
⊢ ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑀 ) → ( 𝑀 − ( 𝑛 + 1 ) ) ∈ ℕ0 ) |
96 |
94 95
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑀 − ( 𝑛 + 1 ) ) ∈ ℕ0 ) |
97 |
92 96
|
nn0addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ∈ ℕ0 ) |
98 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 𝑀 ) ) ) |
99 |
|
elfzofz |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑀 ) → 𝑛 ∈ ( 0 ... 𝑀 ) ) |
100 |
99
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑛 ∈ ( 0 ... 𝑀 ) ) |
101 |
|
fznn0sub |
⊢ ( 𝑛 ∈ ( 0 ... 𝑀 ) → ( 𝑀 − 𝑛 ) ∈ ℕ0 ) |
102 |
100 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑀 − 𝑛 ) ∈ ℕ0 ) |
103 |
92 102
|
nn0addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑁 + ( 𝑀 − 𝑛 ) ) ∈ ℕ0 ) |
104 |
|
dvnadd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑁 + ( 𝑀 − 𝑛 ) ) ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ‘ ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) ) ) |
105 |
81 82 78 103 104
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ‘ ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) ) ) |
106 |
5
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑁 ∈ ℂ ) |
108 |
96
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑀 − ( 𝑛 + 1 ) ) ∈ ℂ ) |
109 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 1 ∈ ℂ ) |
110 |
107 108 109
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) = ( 𝑁 + ( ( 𝑀 − ( 𝑛 + 1 ) ) + 1 ) ) ) |
111 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ℂ ) |
112 |
78
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑛 ∈ ℂ ) |
113 |
111 112 109
|
nppcan2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑀 − ( 𝑛 + 1 ) ) + 1 ) = ( 𝑀 − 𝑛 ) ) |
114 |
113
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑁 + ( ( 𝑀 − ( 𝑛 + 1 ) ) + 1 ) ) = ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) |
115 |
110 114
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) = ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) |
116 |
115
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ‘ ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ‘ ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) ) |
117 |
112 111
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑛 + ( 𝑀 − 𝑛 ) ) = 𝑀 ) |
118 |
117
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑁 + ( 𝑛 + ( 𝑀 − 𝑛 ) ) ) = ( 𝑁 + 𝑀 ) ) |
119 |
111 112
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑀 − 𝑛 ) ∈ ℂ ) |
120 |
107 112 119
|
add12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑁 + ( 𝑛 + ( 𝑀 − 𝑛 ) ) ) = ( 𝑛 + ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) ) |
121 |
118 120
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑁 + 𝑀 ) = ( 𝑛 + ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) ) |
122 |
121
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + ( 𝑁 + ( 𝑀 − 𝑛 ) ) ) ) ) |
123 |
105 116 122
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ‘ ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 𝑀 ) ) ) |
124 |
123
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ‘ ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 𝑀 ) ) ) |
125 |
98 124
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ‘ ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) ) ) |
126 |
81 84 91 97 125
|
dvtaylp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ℂ D ( ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ) 𝐵 ) ) |
127 |
115
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) |
128 |
127
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ℂ D ( ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) + 1 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) = ( ℂ D ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) ) |
129 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ⊆ ℂ ) |
130 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
131 |
129 82 78 130
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
132 |
131
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( 𝑆 Tayl ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ) ) |
133 |
132
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 Tayl ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ) = ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
134 |
133
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) ) 𝐵 ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ) |
135 |
126 128 134
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) = ( ℂ D ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) ) |
136 |
80 135
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ↔ ( ℂ D ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) ) = ( ℂ D ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) ) ) |
137 |
73 136
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ) ) |
138 |
137
|
expcom |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑀 ) → ( 𝜑 → ( ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ) ) ) |
139 |
138
|
a2d |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑛 ) = ( ( 𝑁 + ( 𝑀 − 𝑛 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑛 ) ) 𝐵 ) ) → ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 𝑁 + ( 𝑀 − ( 𝑛 + 1 ) ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) 𝐵 ) ) ) ) |
140 |
19 28 37 46 72 139
|
fzind2 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑀 ) → ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) = ( ( 𝑁 + ( 𝑀 − 𝑀 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) ) |
141 |
10 140
|
mpcom |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) = ( ( 𝑁 + ( 𝑀 − 𝑀 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) |
142 |
66
|
subidd |
⊢ ( 𝜑 → ( 𝑀 − 𝑀 ) = 0 ) |
143 |
142
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 + ( 𝑀 − 𝑀 ) ) = ( 𝑁 + 0 ) ) |
144 |
106
|
addid1d |
⊢ ( 𝜑 → ( 𝑁 + 0 ) = 𝑁 ) |
145 |
143 144
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 + ( 𝑀 − 𝑀 ) ) = 𝑁 ) |
146 |
145
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 + ( 𝑀 − 𝑀 ) ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) = ( 𝑁 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) |
147 |
141 146
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( 𝑁 + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) = ( 𝑁 ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) |