Step |
Hyp |
Ref |
Expression |
1 |
|
dvntaylp0.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvntaylp0.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
dvntaylp0.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
dvntaylp0.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
5 |
|
dvntaylp0.b |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
6 |
|
dvntaylp0.t |
⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) |
7 |
|
elfz3nn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
8
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
10 |
|
elfznn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℕ0 ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
12 |
11
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
13 |
9 12
|
npcand |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ) |
14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) |
15 |
14 6
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) = 𝑇 ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D𝑛 ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) = ( ℂ D𝑛 𝑇 ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) = ( ( ℂ D𝑛 𝑇 ) ‘ 𝑀 ) ) |
18 |
|
fznn0sub |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
20 |
13
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
21 |
20
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
22 |
5 21
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) ) |
23 |
1 2 3 11 19 22
|
dvntaylp |
⊢ ( 𝜑 → ( ( ℂ D𝑛 ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) ( 𝑆 Tayl 𝐹 ) 𝐵 ) ) ‘ 𝑀 ) = ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) |
24 |
17 23
|
eqtr3d |
⊢ ( 𝜑 → ( ( ℂ D𝑛 𝑇 ) ‘ 𝑀 ) = ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) |
25 |
24
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑀 ) ‘ 𝐵 ) = ( ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ‘ 𝐵 ) ) |
26 |
|
cnex |
⊢ ℂ ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
28 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
29 |
27 1 2 3 28
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
30 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) |
31 |
1 29 11 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) |
32 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 ) |
33 |
1 29 11 32
|
syl3anc |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 ) |
34 |
2 33
|
fssdmd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝐴 ) |
35 |
34 3
|
sstrd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝑆 ) |
36 |
19
|
orcd |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) ∈ ℕ0 ∨ ( 𝑁 − 𝑀 ) = +∞ ) ) |
37 |
|
dvnadd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑀 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
38 |
1 29 11 19 37
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
39 |
12 9
|
pncan3d |
⊢ ( 𝜑 → ( 𝑀 + ( 𝑁 − 𝑀 ) ) = 𝑁 ) |
40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
41 |
38 40
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
42 |
41
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
43 |
5 42
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) ) |
44 |
1 31 35 19 43
|
taylplem1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] ( 𝑁 − 𝑀 ) ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) |
45 |
|
eqid |
⊢ ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) = ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) |
46 |
1 31 35 36 44 45
|
tayl0 |
⊢ ( 𝜑 → ( 𝐵 ∈ dom ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ∧ ( ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ‘ 𝐵 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ‘ 𝐵 ) ) ) |
47 |
46
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑁 − 𝑀 ) ( 𝑆 Tayl ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ‘ 𝐵 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ‘ 𝐵 ) ) |
48 |
25 47
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ℂ D𝑛 𝑇 ) ‘ 𝑀 ) ‘ 𝐵 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ‘ 𝐵 ) ) |