| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvply1.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 2 |
|
dvply1.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 3 |
|
dvply1.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 4 |
|
dvply1.b |
⊢ 𝐵 = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
| 5 |
|
dvply1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
1
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ D ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 7 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 8 |
7
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 9 |
8
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 10 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
| 12 |
7
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 13 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 14 |
13
|
topopn |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 15 |
12 14
|
mp1i |
⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 16 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
| 17 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 18 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 19 |
3 17 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
| 22 |
17
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑘 ∈ ℕ0 ) |
| 23 |
21 22
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 24 |
20 23
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 25 |
24
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 26 |
19
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 27 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 = 0 ) → 0 ∈ ℂ ) |
| 28 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 29 |
28 17
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ℕ0 ) |
| 30 |
29
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ℂ ) |
| 31 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑧 ∈ ℂ ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ¬ 𝑘 = 0 ) |
| 33 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 34 |
29 33
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 35 |
|
orel2 |
⊢ ( ¬ 𝑘 = 0 → ( ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) → 𝑘 ∈ ℕ ) ) |
| 36 |
32 34 35
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ℕ ) |
| 37 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 39 |
31 38
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑧 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 40 |
30 39
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 41 |
27 40
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
| 42 |
26 41
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ∈ ℂ ) |
| 43 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ℂ ∈ { ℝ , ℂ } ) |
| 44 |
|
c0ex |
⊢ 0 ∈ V |
| 45 |
|
ovex |
⊢ ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ∈ V |
| 46 |
44 45
|
ifex |
⊢ if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V |
| 47 |
46
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V ) |
| 48 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 49 |
|
dvexp2 |
⊢ ( 𝑘 ∈ ℕ0 → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 51 |
43 23 47 50 19
|
dvmptcmul |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) ) |
| 52 |
9 7 11 15 16 25 42 51
|
dvmptfsum |
⊢ ( 𝜑 → ( ℂ D ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) ) |
| 53 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
| 54 |
53
|
nnne0d |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ≠ 0 ) |
| 55 |
54
|
neneqd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ¬ 𝑘 = 0 ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ¬ 𝑘 = 0 ) |
| 57 |
56
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) |
| 58 |
57
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 59 |
58
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 60 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 61 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
| 62 |
60 61
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
| 63 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 64 |
53
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 65 |
63 64 18
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 66 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ≠ 0 ) |
| 67 |
66
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ¬ 𝑘 = 0 ) |
| 68 |
67
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) |
| 69 |
64
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 70 |
69
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 71 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑧 ∈ ℂ ) |
| 72 |
53 37
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 74 |
71 73
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 75 |
70 74
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 76 |
68 75
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
| 77 |
65 76
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ∈ ℂ ) |
| 78 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( 1 ... 𝑁 ) ) |
| 79 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 80 |
79
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) |
| 81 |
80
|
eleq2i |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ↔ 𝑘 ∈ ( 1 ... 𝑁 ) ) |
| 82 |
78 81
|
sylnibr |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) |
| 83 |
82
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ¬ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) |
| 84 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 86 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 87 |
5 86
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 88 |
87
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 89 |
|
elfzp12 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) ) ) |
| 90 |
88 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) ) ) |
| 91 |
85 90
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
| 92 |
|
orel2 |
⊢ ( ¬ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) → ( ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) → 𝑘 = 0 ) ) |
| 93 |
83 91 92
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → 𝑘 = 0 ) |
| 94 |
93
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = 0 ) |
| 95 |
94
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · 0 ) ) |
| 96 |
63 17 18
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 97 |
96
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · 0 ) = 0 ) |
| 98 |
84 97
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 0 ) = 0 ) |
| 99 |
95 98
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = 0 ) |
| 100 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
| 101 |
62 77 99 100
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 102 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 103 |
102
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 104 |
103
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℂ ) |
| 105 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 106 |
|
pncan |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
| 107 |
104 105 106
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
| 108 |
107
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) = ( 𝑧 ↑ 𝑗 ) ) |
| 109 |
108
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) = ( ( 𝑗 + 1 ) · ( 𝑧 ↑ 𝑗 ) ) ) |
| 110 |
109
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ 𝑗 ) ) ) ) |
| 111 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 112 |
|
peano2nn0 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 113 |
102 112
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 114 |
113
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 115 |
111 114
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 116 |
114
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 117 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑧 ∈ ℂ ) |
| 118 |
117 103
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑧 ↑ 𝑗 ) ∈ ℂ ) |
| 119 |
115 116 118
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( 𝑗 + 1 ) ) · ( 𝑧 ↑ 𝑗 ) ) = ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ 𝑗 ) ) ) ) |
| 120 |
115 116
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( 𝑗 + 1 ) ) = ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 121 |
120
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( 𝑗 + 1 ) ) · ( 𝑧 ↑ 𝑗 ) ) = ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
| 122 |
110 119 121
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
| 123 |
122
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
| 124 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 125 |
124
|
oveq1i |
⊢ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) |
| 126 |
125
|
sumeq1i |
⊢ Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
| 127 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 + 1 ) = ( 𝑗 + 1 ) ) |
| 128 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ ( 𝑘 + 1 ) ) = ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 129 |
127 128
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 130 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑧 ↑ 𝑘 ) = ( 𝑧 ↑ 𝑗 ) ) |
| 131 |
129 130
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
| 132 |
131
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) |
| 133 |
123 126 132
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 134 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 1 ∈ ℤ ) |
| 135 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 136 |
135
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑁 ∈ ℤ ) |
| 137 |
65 75
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
| 138 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 139 |
|
id |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝑘 = ( 𝑗 + 1 ) ) |
| 140 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 − 1 ) = ( ( 𝑗 + 1 ) − 1 ) ) |
| 141 |
140
|
oveq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑧 ↑ ( 𝑘 − 1 ) ) = ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) |
| 142 |
139 141
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
| 143 |
138 142
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) ) |
| 144 |
134 134 136 137 143
|
fsumshftm |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) ) |
| 145 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 146 |
145
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 147 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ∈ V |
| 148 |
4
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ∈ V ) → ( 𝐵 ‘ 𝑘 ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
| 149 |
146 147 148
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ‘ 𝑘 ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
| 150 |
149
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 151 |
150
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 152 |
133 144 151
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 153 |
59 101 152
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 154 |
153
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 155 |
154 2
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) = 𝐺 ) |
| 156 |
6 52 155
|
3eqtrd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = 𝐺 ) |