| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvr1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | dvr1.d | ⊢  /   =  ( /r ‘ 𝑅 ) | 
						
							| 3 |  | dvr1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | id | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 6 | 5 3 | 1unit | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( invr ‘ 𝑅 )  =  ( invr ‘ 𝑅 ) | 
						
							| 9 | 1 7 5 8 2 | dvrval | ⊢ ( ( 𝑋  ∈  𝐵  ∧   1   ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋  /   1  )  =  ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘  1  ) ) ) | 
						
							| 10 | 4 6 9 | syl2anr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  /   1  )  =  ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘  1  ) ) ) | 
						
							| 11 | 8 3 | 1rinv | ⊢ ( 𝑅  ∈  Ring  →  ( ( invr ‘ 𝑅 ) ‘  1  )  =   1  ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( invr ‘ 𝑅 ) ‘  1  )  =   1  ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘  1  ) )  =  ( 𝑋 ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 14 | 1 7 3 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 ( .r ‘ 𝑅 )  1  )  =  𝑋 ) | 
						
							| 15 | 10 13 14 | 3eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  /   1  )  =  𝑋 ) |