Step |
Hyp |
Ref |
Expression |
1 |
|
dvr1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvr1.d |
⊢ / = ( /r ‘ 𝑅 ) |
3 |
|
dvr1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
id |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) |
5 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
6 |
5 3
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
9 |
1 7 5 8 2
|
dvrval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 / 1 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 1 ) ) ) |
10 |
4 6 9
|
syl2anr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 / 1 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 1 ) ) ) |
11 |
8 3
|
1rinv |
⊢ ( 𝑅 ∈ Ring → ( ( invr ‘ 𝑅 ) ‘ 1 ) = 1 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( invr ‘ 𝑅 ) ‘ 1 ) = 1 ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 1 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) 1 ) ) |
14 |
1 7 3
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) 1 ) = 𝑋 ) |
15 |
10 13 14
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 / 1 ) = 𝑋 ) |