| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvradcnv.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | dvradcnv.r | ⊢ 𝑅  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) | 
						
							| 3 |  | dvradcnv.h | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑛 ) ) ) | 
						
							| 4 |  | dvradcnv.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 5 |  | dvradcnv.x | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 6 |  | dvradcnv.l | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  <  𝑅 ) | 
						
							| 7 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 8 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 10 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 11 |  | nn0cn | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℂ ) | 
						
							| 13 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 14 | 13 | mptex | ⊢ ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  ∈  V | 
						
							| 15 | 14 | shftval4 | ⊢ ( ( 1  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1  +  𝑘 ) ) ) | 
						
							| 16 | 10 12 15 | sylancr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1  +  𝑘 ) ) ) | 
						
							| 17 |  | addcom | ⊢ ( ( 1  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 1  +  𝑘 )  =  ( 𝑘  +  1 ) ) | 
						
							| 18 | 10 12 17 | sylancr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 1  +  𝑘 )  =  ( 𝑘  +  1 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1  +  𝑘 ) )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 20 |  | peano2nn0 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 22 |  | id | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  𝑖  =  ( 𝑘  +  1 ) ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 24 | 22 23 | oveq12d | ⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) | 
						
							| 26 |  | ovex | ⊢ ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) ) ) )  ∈  V | 
						
							| 27 | 24 25 26 | fvmpt | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 28 | 21 27 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 29 | 1 | pserval2 | ⊢ ( ( 𝑋  ∈  ℂ  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 30 | 5 20 29 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) ) )  =  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 33 | 28 32 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 34 | 16 19 33 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 35 | 21 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 36 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( 𝐴 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 37 | 4 20 36 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 38 |  | expcl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  ( 𝑘  +  1 )  ∈  ℕ0 )  →  ( 𝑋 ↑ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 39 | 5 20 38 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑋 ↑ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 40 | 37 39 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 41 | 40 | abscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 42 | 35 41 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) )  ∈  ℝ ) | 
						
							| 43 | 34 42 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴 ‘ ( 𝑛  +  1 ) )  =  ( 𝐴 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 46 | 44 45 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  =  ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 47 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑋 ↑ 𝑛 )  =  ( 𝑋 ↑ 𝑘 ) ) | 
						
							| 48 | 46 47 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝑛  +  1 )  ·  ( 𝐴 ‘ ( 𝑛  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑛 ) )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) | 
						
							| 49 |  | ovex | ⊢ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) )  ∈  V | 
						
							| 50 | 48 3 49 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐻 ‘ 𝑘 )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) | 
						
							| 52 | 21 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 53 | 52 37 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 54 |  | expcl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 55 | 5 54 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 56 | 53 55 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 57 | 51 56 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 58 |  | id | ⊢ ( 𝑖  =  𝑘  →  𝑖  =  𝑘 ) | 
						
							| 59 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑘  →  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) | 
						
							| 60 | 58 59 | oveq12d | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) )  =  ( 𝑘  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) | 
						
							| 61 | 60 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑘  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) | 
						
							| 62 | 1 4 2 5 6 61 | radcnvlt1 | ⊢ ( 𝜑  →  ( seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) )  ∈  dom   ⇝   ∧  seq 0 (  +  ,  ( abs  ∘  ( 𝐺 ‘ 𝑋 ) ) )  ∈  dom   ⇝  ) ) | 
						
							| 63 | 62 | simpld | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 64 |  | climdm | ⊢ ( seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 65 | 63 64 | sylib | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 66 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 67 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 68 | 14 | isershft | ⊢ ( ( 0  ∈  ℤ  ∧  - 1  ∈  ℤ )  →  ( seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) )  ↔  seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 69 | 66 67 68 | mp2an | ⊢ ( seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) )  ↔  seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 70 | 65 69 | sylib | ⊢ ( 𝜑  →  seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 71 |  | seqex | ⊢ seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ∈  V | 
						
							| 72 |  | fvex | ⊢ (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) )  ∈  V | 
						
							| 73 | 71 72 | breldm | ⊢ ( seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ⇝  (  ⇝  ‘ seq 0 (  +  ,  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ) )  →  seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ∈  dom   ⇝  ) | 
						
							| 74 | 70 73 | syl | ⊢ ( 𝜑  →  seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ∈  dom   ⇝  ) | 
						
							| 75 |  | eqid | ⊢ ( ℤ≥ ‘ ( 0  +  - 1 ) )  =  ( ℤ≥ ‘ ( 0  +  - 1 ) ) | 
						
							| 76 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 77 | 76 | addlidi | ⊢ ( 0  +  - 1 )  =  - 1 | 
						
							| 78 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 79 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 80 |  | le0neg2 | ⊢ ( 1  ∈  ℝ  →  ( 0  ≤  1  ↔  - 1  ≤  0 ) ) | 
						
							| 81 | 79 80 | ax-mp | ⊢ ( 0  ≤  1  ↔  - 1  ≤  0 ) | 
						
							| 82 | 78 81 | mpbi | ⊢ - 1  ≤  0 | 
						
							| 83 | 77 82 | eqbrtri | ⊢ ( 0  +  - 1 )  ≤  0 | 
						
							| 84 | 77 67 | eqeltri | ⊢ ( 0  +  - 1 )  ∈  ℤ | 
						
							| 85 | 84 | eluz1i | ⊢ ( 0  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) )  ↔  ( 0  ∈  ℤ  ∧  ( 0  +  - 1 )  ≤  0 ) ) | 
						
							| 86 | 66 83 85 | mpbir2an | ⊢ 0  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) ) | 
						
							| 87 | 86 | a1i | ⊢ ( 𝜑  →  0  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) ) ) | 
						
							| 88 |  | eluzelcn | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 90 | 10 89 15 | sylancr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) ) )  →  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1  +  𝑘 ) ) ) | 
						
							| 91 |  | nn0re | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℝ ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℝ ) | 
						
							| 93 | 1 4 5 | psergf | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) | 
						
							| 94 | 93 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 95 | 94 | abscld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 96 | 92 95 | remulcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) )  ∈  ℝ ) | 
						
							| 97 | 96 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 98 | 97 | fmpttd | ⊢ ( 𝜑  →  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 99 | 10 88 17 | sylancr | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) )  →  ( 1  +  𝑘 )  =  ( 𝑘  +  1 ) ) | 
						
							| 100 |  | eluzp1p1 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) )  →  ( 𝑘  +  1 )  ∈  ( ℤ≥ ‘ ( ( 0  +  - 1 )  +  1 ) ) ) | 
						
							| 101 | 77 | oveq1i | ⊢ ( ( 0  +  - 1 )  +  1 )  =  ( - 1  +  1 ) | 
						
							| 102 |  | 1pneg1e0 | ⊢ ( 1  +  - 1 )  =  0 | 
						
							| 103 | 10 76 102 | addcomli | ⊢ ( - 1  +  1 )  =  0 | 
						
							| 104 | 101 103 | eqtri | ⊢ ( ( 0  +  - 1 )  +  1 )  =  0 | 
						
							| 105 | 104 | fveq2i | ⊢ ( ℤ≥ ‘ ( ( 0  +  - 1 )  +  1 ) )  =  ( ℤ≥ ‘ 0 ) | 
						
							| 106 | 7 105 | eqtr4i | ⊢ ℕ0  =  ( ℤ≥ ‘ ( ( 0  +  - 1 )  +  1 ) ) | 
						
							| 107 | 100 106 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) )  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 108 | 99 107 | eqeltrd | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) )  →  ( 1  +  𝑘 )  ∈  ℕ0 ) | 
						
							| 109 |  | ffvelcdm | ⊢ ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) : ℕ0 ⟶ ℂ  ∧  ( 1  +  𝑘 )  ∈  ℕ0 )  →  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1  +  𝑘 ) )  ∈  ℂ ) | 
						
							| 110 | 98 108 109 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) ) )  →  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) ) ‘ ( 1  +  𝑘 ) )  ∈  ℂ ) | 
						
							| 111 | 90 110 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 0  +  - 1 ) ) )  →  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 112 | 75 87 111 | iserex | ⊢ ( 𝜑  →  ( seq ( 0  +  - 1 ) (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ∈  dom   ⇝  ) ) | 
						
							| 113 | 74 112 | mpbid | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) )  ∈  dom   ⇝  ) | 
						
							| 114 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑋  =  0 )  →  1  ∈  ℝ ) | 
						
							| 115 |  | neqne | ⊢ ( ¬  𝑋  =  0  →  𝑋  ≠  0 ) | 
						
							| 116 |  | absrpcl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 )  →  ( abs ‘ 𝑋 )  ∈  ℝ+ ) | 
						
							| 117 | 5 115 116 | syl2an | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  0 )  →  ( abs ‘ 𝑋 )  ∈  ℝ+ ) | 
						
							| 118 | 117 | rprecred | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  0 )  →  ( 1  /  ( abs ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 119 | 114 118 | ifclda | ⊢ ( 𝜑  →  if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 120 |  | oveq1 | ⊢ ( 1  =  if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  →  ( 1  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 121 | 120 | breq2d | ⊢ ( 1  =  if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  →  ( ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( 1  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  ↔  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) ) | 
						
							| 122 |  | oveq1 | ⊢ ( ( 1  /  ( abs ‘ 𝑋 ) )  =  if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  →  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 123 | 122 | breq2d | ⊢ ( ( 1  /  ( abs ‘ 𝑋 ) )  =  if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  →  ( ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  ↔  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) ) | 
						
							| 124 |  | elnnuz | ⊢ ( 𝑘  ∈  ℕ  ↔  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 125 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 126 | 124 125 | sylbir | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 1 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 127 | 21 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  ( 𝑘  +  1 ) ) | 
						
							| 128 | 40 | absge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 129 | 35 41 127 128 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 130 | 126 129 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  0  ≤  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  0  ≤  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 132 |  | oveq1 | ⊢ ( 𝑋  =  0  →  ( 𝑋 ↑ 𝑘 )  =  ( 0 ↑ 𝑘 ) ) | 
						
							| 133 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 134 | 133 124 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 135 | 134 | 0expd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( 0 ↑ 𝑘 )  =  0 ) | 
						
							| 136 | 132 135 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  ( 𝑋 ↑ 𝑘 )  =  0 ) | 
						
							| 137 | 136 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) )  =  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  0 ) ) | 
						
							| 138 | 53 | mul01d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  0 )  =  0 ) | 
						
							| 139 | 126 138 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  0 )  =  0 ) | 
						
							| 140 | 139 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  0 )  =  0 ) | 
						
							| 141 | 137 140 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) )  =  0 ) | 
						
							| 142 | 141 | abs00bd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  =  0 ) | 
						
							| 143 | 42 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) )  ∈  ℂ ) | 
						
							| 144 | 143 | mullidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 1  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 145 | 126 144 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( 1  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  ( 1  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 147 | 131 142 146 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  =  0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( 1  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 148 |  | df-ne | ⊢ ( 𝑋  ≠  0  ↔  ¬  𝑋  =  0 ) | 
						
							| 149 | 56 | abscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 150 | 52 37 55 | mulassd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) )  =  ( ( 𝑘  +  1 )  ·  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) | 
						
							| 151 | 150 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  =  ( abs ‘ ( ( 𝑘  +  1 )  ·  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 152 | 37 55 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 153 | 52 152 | absmuld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( ( 𝑘  +  1 )  ·  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  =  ( ( abs ‘ ( 𝑘  +  1 ) )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 154 | 35 127 | absidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( 𝑘  +  1 ) )  =  ( 𝑘  +  1 ) ) | 
						
							| 155 | 154 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( abs ‘ ( 𝑘  +  1 ) )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 156 | 151 153 155 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 157 | 149 156 | eqled | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 159 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑋  ∈  ℂ ) | 
						
							| 160 | 116 | rpreccld | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 )  →  ( 1  /  ( abs ‘ 𝑋 ) )  ∈  ℝ+ ) | 
						
							| 161 | 159 160 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 1  /  ( abs ‘ 𝑋 ) )  ∈  ℝ+ ) | 
						
							| 162 | 161 | rpcnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 1  /  ( abs ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 163 | 52 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 164 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 165 | 164 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 166 | 162 163 165 | mul12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 167 | 40 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 168 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  𝑋  ∈  ℂ ) | 
						
							| 169 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  𝑋  ≠  0 ) | 
						
							| 170 | 167 168 169 | absdivd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ ( ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) )  /  𝑋 ) )  =  ( ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) )  /  ( abs ‘ 𝑋 ) ) ) | 
						
							| 171 | 37 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 𝐴 ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 172 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 𝑋 ↑ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 173 | 171 172 168 169 | divassd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) )  /  𝑋 )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑋 ↑ ( 𝑘  +  1 ) )  /  𝑋 ) ) ) | 
						
							| 174 | 12 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  𝑘  ∈  ℂ ) | 
						
							| 175 |  | pncan | ⊢ ( ( 𝑘  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 ) | 
						
							| 176 | 174 10 175 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 𝑋 ↑ ( ( 𝑘  +  1 )  −  1 ) )  =  ( 𝑋 ↑ 𝑘 ) ) | 
						
							| 178 | 21 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℤ ) | 
						
							| 179 | 178 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 𝑘  +  1 )  ∈  ℤ ) | 
						
							| 180 | 168 169 179 | expm1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 𝑋 ↑ ( ( 𝑘  +  1 )  −  1 ) )  =  ( ( 𝑋 ↑ ( 𝑘  +  1 ) )  /  𝑋 ) ) | 
						
							| 181 | 177 180 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( 𝑋 ↑ 𝑘 )  =  ( ( 𝑋 ↑ ( 𝑘  +  1 ) )  /  𝑋 ) ) | 
						
							| 182 | 181 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( ( 𝑋 ↑ ( 𝑘  +  1 ) )  /  𝑋 ) ) ) | 
						
							| 183 | 173 182 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) )  /  𝑋 )  =  ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) | 
						
							| 184 | 183 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ ( ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) )  /  𝑋 ) )  =  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) | 
						
							| 185 | 5 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 186 | 185 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 187 | 186 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 188 | 159 116 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ 𝑋 )  ∈  ℝ+ ) | 
						
							| 189 | 188 | rpne0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ 𝑋 )  ≠  0 ) | 
						
							| 190 | 165 187 189 | divrec2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) )  /  ( abs ‘ 𝑋 ) )  =  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 191 | 170 184 190 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) )  =  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) | 
						
							| 192 | 191 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( 𝑘  +  1 )  ·  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 193 | 166 192 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) ) | 
						
							| 194 | 158 193 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑋  ≠  0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 195 | 126 194 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  𝑋  ≠  0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 196 | 148 195 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  ∧  ¬  𝑋  =  0 )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( ( 1  /  ( abs ‘ 𝑋 ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 197 | 121 123 147 196 | ifbothda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) )  ≤  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 198 | 51 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( 𝐻 ‘ 𝑘 ) )  =  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) | 
						
							| 199 | 126 198 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( abs ‘ ( 𝐻 ‘ 𝑘 ) )  =  ( abs ‘ ( ( ( 𝑘  +  1 )  ·  ( 𝐴 ‘ ( 𝑘  +  1 ) ) )  ·  ( 𝑋 ↑ 𝑘 ) ) ) ) | 
						
							| 200 | 34 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 ) )  =  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 201 | 126 200 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 ) )  =  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( abs ‘ ( ( 𝐴 ‘ ( 𝑘  +  1 ) )  ·  ( 𝑋 ↑ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 202 | 197 199 201 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( abs ‘ ( 𝐻 ‘ 𝑘 ) )  ≤  ( if ( 𝑋  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑋 ) ) )  ·  ( ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  ·  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑖 ) ) ) )  shift  - 1 ) ‘ 𝑘 ) ) ) | 
						
							| 203 | 7 9 43 57 113 119 202 | cvgcmpce | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ∈  dom   ⇝  ) |