Step |
Hyp |
Ref |
Expression |
1 |
|
dvrass.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvrass.o |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
3 |
|
dvrass.d |
⊢ / = ( /r ‘ 𝑅 ) |
4 |
|
dvrass.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) |
6 |
|
simpr1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) |
8 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → 𝑍 ∈ 𝑈 ) |
9 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
10 |
2 9 1
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
11 |
5 8 10
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
12 |
1 4
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( 𝑋 · ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
13 |
5 6 7 11 12
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( 𝑋 · ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
14 |
1 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
15 |
14
|
3adant3r3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
16 |
1 4 2 9 3
|
dvrval |
⊢ ( ( ( 𝑋 · 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) / 𝑍 ) = ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
17 |
15 8 16
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) / 𝑍 ) = ( ( 𝑋 · 𝑌 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
18 |
1 4 2 9 3
|
dvrval |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑌 / 𝑍 ) = ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
19 |
7 8 18
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑌 / 𝑍 ) = ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( 𝑋 · ( 𝑌 / 𝑍 ) ) = ( 𝑋 · ( 𝑌 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
21 |
13 17 20
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) / 𝑍 ) = ( 𝑋 · ( 𝑌 / 𝑍 ) ) ) |