| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrass.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvrass.o |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
dvrass.d |
⊢ / = ( /r ‘ 𝑅 ) |
| 4 |
|
dvrass.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 6 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) |
| 7 |
1 2
|
unitcl |
⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵 ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝐵 ) |
| 9 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 10 |
1 2 3 4
|
dvrass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) / 𝑌 ) = ( 𝑋 · ( 𝑌 / 𝑌 ) ) ) |
| 11 |
5 6 8 9 10
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) / 𝑌 ) = ( 𝑋 · ( 𝑌 / 𝑌 ) ) ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 13 |
2 3 12
|
dvrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( 𝑌 / 𝑌 ) ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) ) |
| 16 |
1 4 12
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 18 |
11 15 17
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) / 𝑌 ) = 𝑋 ) |