| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfcn |
⊢ ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ |
| 2 |
|
ssidd |
⊢ ( 𝐴 ∈ ℂ → ℂ ⊆ ℂ ) |
| 3 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 4 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
| 5 |
4
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
| 6 |
3 5
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
| 7 |
6
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 8 |
|
difssd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
| 9 |
2 7 8
|
dvbss |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⊆ ( ℂ ∖ { 0 } ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) ) |
| 11 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 12 |
11
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 13 |
|
cnn0opn |
⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) |
| 14 |
|
isopn3i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) = ( ℂ ∖ { 0 } ) ) |
| 15 |
12 13 14
|
mp2an |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) = ( ℂ ∖ { 0 } ) |
| 16 |
10 15
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) ) |
| 17 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 19 |
18
|
sqvald |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) = ( 𝑦 · 𝑦 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( 𝐴 / ( 𝑦 · 𝑦 ) ) ) |
| 21 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
| 22 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 24 |
21 18 18 23 23
|
divdiv1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝐴 / 𝑦 ) / 𝑦 ) = ( 𝐴 / ( 𝑦 · 𝑦 ) ) ) |
| 25 |
20 24
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 26 |
25
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = - ( ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 27 |
21 18 23
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 28 |
27 18 23
|
divnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( ( 𝐴 / 𝑦 ) / 𝑦 ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 29 |
26 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 30 |
27
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 31 |
|
eqid |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 32 |
31
|
cdivcncf |
⊢ ( - ( 𝐴 / 𝑦 ) ∈ ℂ → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
| 33 |
30 32
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( - ( 𝐴 / 𝑦 ) / 𝑧 ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 35 |
33 10 34
|
cnmptlimc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) ) |
| 36 |
29 35
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) ) |
| 37 |
|
cncff |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 38 |
33 37
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 39 |
38
|
limcdif |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) = ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) limℂ 𝑦 ) ) |
| 40 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
| 42 |
41
|
eldifad |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ∈ ℂ ) |
| 43 |
17
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑦 ∈ ℂ ) |
| 44 |
42 43
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 − 𝑦 ) ∈ ℂ ) |
| 45 |
27
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 46 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) |
| 47 |
41 46
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ≠ 0 ) |
| 48 |
45 42 47
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) |
| 49 |
|
mulneg12 |
⊢ ( ( ( 𝑧 − 𝑦 ) ∈ ℂ ∧ ( ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 50 |
44 48 49
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 51 |
43 42 48
|
subdird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 − 𝑧 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) − ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) ) |
| 52 |
42 43
|
negsubdi2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( 𝑧 − 𝑦 ) = ( 𝑦 − 𝑧 ) ) |
| 53 |
52
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑦 − 𝑧 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑧 ) ) |
| 55 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) |
| 56 |
|
ovex |
⊢ ( 𝐴 / 𝑧 ) ∈ V |
| 57 |
54 55 56
|
fvmpt |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
| 58 |
41 57
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
| 59 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝐴 ∈ ℂ ) |
| 60 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑦 ≠ 0 ) |
| 61 |
59 43 60
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑦 · ( 𝐴 / 𝑦 ) ) = 𝐴 ) |
| 62 |
61
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 · ( 𝐴 / 𝑦 ) ) / 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
| 63 |
43 45 42 47
|
divassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 · ( 𝐴 / 𝑦 ) ) / 𝑧 ) = ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 64 |
58 62 63
|
3eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 65 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑦 ) ) |
| 66 |
|
ovex |
⊢ ( 𝐴 / 𝑦 ) ∈ V |
| 67 |
65 55 66
|
fvmpt |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
| 68 |
67
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
| 69 |
45 42 47
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( 𝐴 / 𝑦 ) ) |
| 70 |
68 69
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 71 |
64 70
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) − ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) ) |
| 72 |
51 53 71
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 73 |
45 42 47
|
divnegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( ( 𝐴 / 𝑦 ) / 𝑧 ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 75 |
50 72 74
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 76 |
75
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) = ( ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) / ( 𝑧 − 𝑦 ) ) ) |
| 77 |
45
|
negcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 78 |
77 42 47
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) |
| 79 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) → 𝑧 ≠ 𝑦 ) |
| 80 |
79
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ≠ 𝑦 ) |
| 81 |
42 43 80
|
subne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 − 𝑦 ) ≠ 0 ) |
| 82 |
78 44 81
|
divcan3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) / ( 𝑧 − 𝑦 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 83 |
76 82
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 84 |
83
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 85 |
|
difss |
⊢ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ⊆ ( ℂ ∖ { 0 } ) |
| 86 |
|
resmpt |
⊢ ( ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ⊆ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 87 |
85 86
|
ax-mp |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 88 |
84 87
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) ) |
| 89 |
88
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) = ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) limℂ 𝑦 ) ) |
| 90 |
39 89
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) = ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) |
| 91 |
36 90
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) |
| 92 |
11
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 93 |
92
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 94 |
|
eqid |
⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) |
| 95 |
|
ssidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ℂ ⊆ ℂ ) |
| 96 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 97 |
|
difssd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
| 98 |
93 11 94 95 96 97
|
eldv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ↔ ( 𝑦 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) ∧ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) ) ) |
| 99 |
16 91 98
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 100 |
|
vex |
⊢ 𝑦 ∈ V |
| 101 |
|
negex |
⊢ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ V |
| 102 |
100 101
|
breldm |
⊢ ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) → 𝑦 ∈ dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
| 103 |
99 102
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
| 104 |
9 103
|
eqelssd |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) = ( ℂ ∖ { 0 } ) ) |
| 105 |
104
|
feq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ ↔ ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) ) |
| 106 |
1 105
|
mpbii |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 107 |
106
|
ffnd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
| 108 |
|
negex |
⊢ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V |
| 109 |
108
|
rgenw |
⊢ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V |
| 110 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) |
| 111 |
110
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
| 112 |
109 111
|
mp1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
| 113 |
|
ffun |
⊢ ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ → Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
| 114 |
1 113
|
mp1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
| 115 |
|
funbrfv |
⊢ ( Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) → ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) ) |
| 116 |
114 99 115
|
sylc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 117 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
| 118 |
117
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 / ( 𝑥 ↑ 2 ) ) = ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 119 |
118
|
negeqd |
⊢ ( 𝑥 = 𝑦 → - ( 𝐴 / ( 𝑥 ↑ 2 ) ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 120 |
119 110 101
|
fvmpt |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 121 |
120
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 122 |
116 121
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) ) |
| 123 |
107 112 122
|
eqfnfvd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ) |