Step |
Hyp |
Ref |
Expression |
1 |
|
dvrecg.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvrecg.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
3 |
|
dvrecg.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
4 |
|
dvrecg.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ 𝑉 ) |
5 |
|
dvrecg.db |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
6 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
7 |
6
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
9 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
11 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
13 |
8 10 12
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
14 |
10
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
15 |
|
2z |
⊢ 2 ∈ ℤ |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 2 ∈ ℤ ) |
17 |
10 12 16
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) ≠ 0 ) |
18 |
8 14 17
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ℂ ) |
19 |
18
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ℂ ) |
20 |
|
dvrec |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 / 𝑦 ) = ( 𝐴 / 𝐵 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( 𝐴 / ( 𝐵 ↑ 2 ) ) ) |
25 |
24
|
negeqd |
⊢ ( 𝑦 = 𝐵 → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = - ( 𝐴 / ( 𝐵 ↑ 2 ) ) ) |
26 |
1 7 3 4 13 19 5 21 22 25
|
dvmptco |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) ) |
27 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
28 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) → 𝐵 ∈ ℂ ) |
29 |
3 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
30 |
29
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
31 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
32 |
3 31
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
33 |
32
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ≠ 0 ) |
34 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℤ ) |
35 |
29 33 34
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ≠ 0 ) |
36 |
27 30 35
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
37 |
1 29 4 5
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
38 |
36 37
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) |
39 |
27 37 30 35
|
div23d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) |
40 |
39
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) |
41 |
40
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) |
42 |
38 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) |
43 |
42
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) ) |
44 |
26 43
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) ) |