Step |
Hyp |
Ref |
Expression |
1 |
|
dvreq1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvreq1.o |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
3 |
|
dvreq1.d |
⊢ / = ( /r ‘ 𝑅 ) |
4 |
|
dvreq1.t |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
oveq1 |
⊢ ( ( 𝑋 / 𝑌 ) = 1 → ( ( 𝑋 / 𝑌 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 1 ( .r ‘ 𝑅 ) 𝑌 ) ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
1 2 3 6
|
dvrcan1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) ( .r ‘ 𝑅 ) 𝑌 ) = 𝑋 ) |
8 |
1 2
|
unitcl |
⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵 ) |
9 |
1 6 4
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
12 |
7 11
|
eqeq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( 𝑋 / 𝑌 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 1 ( .r ‘ 𝑅 ) 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
13 |
5 12
|
syl5ib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1 → 𝑋 = 𝑌 ) ) |
14 |
2 3 4
|
dvrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = 1 ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = 1 ) |
16 |
|
oveq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 / 𝑌 ) = ( 𝑌 / 𝑌 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝑋 / 𝑌 ) = 1 ↔ ( 𝑌 / 𝑌 ) = 1 ) ) |
18 |
15 17
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 = 𝑌 → ( 𝑋 / 𝑌 ) = 1 ) ) |
19 |
13 18
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1 ↔ 𝑋 = 𝑌 ) ) |