Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) |
2 |
1
|
a1i |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → Rel ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ) |
3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
4 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
5 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
6 |
|
simp1l |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑆 ⊆ ℂ ) |
7 |
|
simp1r |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
8 |
|
simp2l |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐴 ⊆ 𝑆 ) |
9 |
|
simp2r |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐵 ⊆ 𝑆 ) |
10 |
|
simp3r |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
11 |
6 7 8
|
dvcl |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
12 |
10 11
|
mpdan |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑦 ∈ ℂ ) |
13 |
|
simp3l |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ∈ 𝐵 ) |
14 |
3 4 5 6 7 8 9 12 10 13
|
dvres2lem |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) |
15 |
14
|
3expia |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
16
|
brresi |
⊢ ( 𝑥 ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
18 |
|
df-br |
⊢ ( 𝑥 ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ) |
19 |
17 18
|
bitr3i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ) |
20 |
|
df-br |
⊢ ( 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) ) |
21 |
15 19 20
|
3imtr3g |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) ) ) |
22 |
2 21
|
relssdv |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ⊆ ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) ) |