Step |
Hyp |
Ref |
Expression |
1 |
|
dvres.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
2 |
|
dvres.t |
⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) |
3 |
|
dvres.g |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
4 |
|
dvres.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
5 |
|
dvres.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
6 |
|
dvres.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
7 |
|
dvres.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑆 ) |
8 |
|
dvres.y |
⊢ ( 𝜑 → 𝑦 ∈ ℂ ) |
9 |
|
dvres2lem.d |
⊢ ( 𝜑 → 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
10 |
|
dvres2lem.x |
⊢ ( 𝜑 → 𝑥 ∈ 𝐵 ) |
11 |
1
|
cnfldtop |
⊢ 𝐾 ∈ Top |
12 |
|
cnex |
⊢ ℂ ∈ V |
13 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
14 |
4 12 13
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
15 |
|
resttop |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
16 |
11 14 15
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
17 |
2 16
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ Top ) |
18 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
19 |
18 6
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑆 ) |
20 |
1
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
21 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
22 |
20 4 21
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
23 |
2 22
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ( TopOn ‘ 𝑆 ) ) |
24 |
|
toponuni |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝑇 ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝑇 ) |
26 |
19 25
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝑇 ) |
27 |
|
difssd |
⊢ ( 𝜑 → ( ∪ 𝑇 ∖ 𝐵 ) ⊆ ∪ 𝑇 ) |
28 |
26 27
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ⊆ ∪ 𝑇 ) |
29 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
30 |
6 25
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑇 ) |
31 |
|
ssdif |
⊢ ( 𝐴 ⊆ ∪ 𝑇 → ( 𝐴 ∖ 𝐵 ) ⊆ ( ∪ 𝑇 ∖ 𝐵 ) ) |
32 |
|
unss2 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ ( ∪ 𝑇 ∖ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) |
33 |
30 31 32
|
3syl |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) |
34 |
29 33
|
eqsstrrid |
⊢ ( 𝜑 → 𝐴 ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) |
35 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
36 |
35
|
ntrss |
⊢ ( ( 𝑇 ∈ Top ∧ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ⊆ ∪ 𝑇 ∧ 𝐴 ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) → ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ) |
37 |
17 28 34 36
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ) |
38 |
2 1 3 4 5 6
|
eldv |
⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
39 |
9 38
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) |
40 |
39
|
simpld |
⊢ ( 𝜑 → 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ) |
41 |
37 40
|
sseldd |
⊢ ( 𝜑 → 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ) |
42 |
41 10
|
elind |
⊢ ( 𝜑 → 𝑥 ∈ ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) ) |
43 |
7 25
|
sseqtrd |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝑇 ) |
44 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
46 |
|
eqid |
⊢ ( 𝑇 ↾t 𝐵 ) = ( 𝑇 ↾t 𝐵 ) |
47 |
35 46
|
restntr |
⊢ ( ( 𝑇 ∈ Top ∧ 𝐵 ⊆ ∪ 𝑇 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) → ( ( int ‘ ( 𝑇 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) ) |
48 |
17 43 45 47
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) ) |
49 |
2
|
oveq1i |
⊢ ( 𝑇 ↾t 𝐵 ) = ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐵 ) |
50 |
11
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
51 |
|
restabs |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐵 ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) ) |
52 |
50 7 14 51
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) ) |
53 |
49 52
|
syl5eq |
⊢ ( 𝜑 → ( 𝑇 ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( 𝑇 ↾t 𝐵 ) ) = ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ) |
55 |
54
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
56 |
48 55
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) = ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
57 |
42 56
|
eleqtrd |
⊢ ( 𝜑 → 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
58 |
|
limcresi |
⊢ ( 𝐺 limℂ 𝑥 ) ⊆ ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) |
59 |
39
|
simprd |
⊢ ( 𝜑 → 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) |
60 |
58 59
|
sselid |
⊢ ( 𝜑 → 𝑦 ∈ ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
61 |
|
difss |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∩ 𝐵 ) |
62 |
61 44
|
sstri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ 𝐵 |
63 |
62
|
sseli |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) → 𝑧 ∈ 𝐵 ) |
64 |
|
fvres |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
65 |
10
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
66 |
64 65
|
oveqan12rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
67 |
66
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
68 |
63 67
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
69 |
68
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
70 |
3
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) |
71 |
|
ssdif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) ) |
72 |
|
resmpt |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
73 |
18 71 72
|
mp2b |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
74 |
70 73
|
eqtri |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
75 |
69 74
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) ) |
76 |
75
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
77 |
60 76
|
eleqtrrd |
⊢ ( 𝜑 → 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
78 |
|
eqid |
⊢ ( 𝐾 ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) |
79 |
|
eqid |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
80 |
7 4
|
sstrd |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
81 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
82 |
5 81
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
83 |
78 1 79 80 82 45
|
eldv |
⊢ ( 𝜑 → ( 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
84 |
57 77 83
|
mpbir2and |
⊢ ( 𝜑 → 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) |