| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reldv |
⊢ Rel ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) |
| 2 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 3 |
2
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ ℂ ) |
| 4 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 5 |
|
simprr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) |
| 6 |
|
ssidd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ℂ ⊆ ℂ ) |
| 7 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝐴 ⊆ ℂ ) |
| 8 |
6 4 7
|
dvbss |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( ℂ D 𝐹 ) ⊆ 𝐴 ) |
| 9 |
5 8
|
sstrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ 𝐴 ) |
| 10 |
4 9
|
fssresd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( 𝐹 ↾ 𝑆 ) : 𝑆 ⟶ ℂ ) |
| 11 |
|
ssidd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ 𝑆 ) |
| 12 |
3 10 11
|
dvbss |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ 𝑆 ) |
| 13 |
|
ssdmres |
⊢ ( 𝑆 ⊆ dom ( ℂ D 𝐹 ) ↔ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) = 𝑆 ) |
| 14 |
5 13
|
sylib |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) = 𝑆 ) |
| 15 |
12 14
|
sseqtrrd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| 16 |
|
relssres |
⊢ ( ( Rel ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ∧ dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 17 |
1 15 16
|
sylancr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 18 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) : dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⟶ ℂ ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) : dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⟶ ℂ ) |
| 20 |
19
|
ffund |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → Fun ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 21 |
|
dvres2 |
⊢ ( ( ( ℂ ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) ) → ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 22 |
6 4 7 3 21
|
syl22anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 23 |
|
funssres |
⊢ ( ( Fun ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ∧ ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| 25 |
17 24
|
eqtr3d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |