| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 2 |
1
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ℝ ⊆ ℂ ) |
| 3 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 4 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐴 ⊆ ℝ ) |
| 5 |
|
ioossre |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ℝ |
| 6 |
5
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐵 (,) 𝐶 ) ⊆ ℝ ) |
| 7 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 8 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 9 |
7 8
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℝ ∧ ( 𝐵 (,) 𝐶 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) ) ) |
| 10 |
2 3 4 6 9
|
syl22anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℝ D ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) ) ) |
| 11 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) = ( 𝐵 (,) 𝐶 ) |
| 12 |
11
|
reseq2i |
⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐵 (,) 𝐶 ) ) |
| 13 |
10 12
|
eqtrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℝ D ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |