Step |
Hyp |
Ref |
Expression |
1 |
|
dvres.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
2 |
|
dvres.t |
⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) |
3 |
|
dvres.g |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
4 |
|
dvres.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
5 |
|
dvres.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
6 |
|
dvres.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
7 |
|
dvres.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑆 ) |
8 |
|
dvres.y |
⊢ ( 𝜑 → 𝑦 ∈ ℂ ) |
9 |
|
difss |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∩ 𝐵 ) |
10 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
11 |
9 10
|
sstri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ 𝐵 |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) |
13 |
11 12
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → 𝑧 ∈ 𝐵 ) |
14 |
13
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
15 |
1
|
cnfldtop |
⊢ 𝐾 ∈ Top |
16 |
|
cnex |
⊢ ℂ ∈ V |
17 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
18 |
4 16 17
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
19 |
|
resttop |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
20 |
15 18 19
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
21 |
2 20
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ Top ) |
22 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
23 |
22 6
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑆 ) |
24 |
1
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
25 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
26 |
24 4 25
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
27 |
2 26
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ( TopOn ‘ 𝑆 ) ) |
28 |
|
toponuni |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝑇 ) |
29 |
27 28
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝑇 ) |
30 |
23 29
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝑇 ) |
31 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
32 |
31
|
ntrss2 |
⊢ ( ( 𝑇 ∈ Top ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝑇 ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
33 |
21 30 32
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
34 |
33 10
|
sstrdi |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐵 ) |
35 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ 𝐵 ) |
36 |
35
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
38 |
14 37
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
39 |
38
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
40 |
39
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
41 |
3
|
reseq1i |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) |
42 |
|
ssdif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) ) |
43 |
|
resmpt |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
44 |
22 42 43
|
mp2b |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
45 |
41 44
|
eqtri |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
46 |
40 45
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) ) |
47 |
46
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
48 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
49 |
6 4
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐴 ⊆ ℂ ) |
51 |
33 22
|
sstrdi |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) |
52 |
51
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ 𝐴 ) |
53 |
48 50 52
|
dvlem |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
54 |
53 3
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐺 : ( 𝐴 ∖ { 𝑥 } ) ⟶ ℂ ) |
55 |
22 42
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) ) |
56 |
|
difss |
⊢ ( 𝐴 ∖ { 𝑥 } ) ⊆ 𝐴 |
57 |
56 50
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ℂ ) |
58 |
|
eqid |
⊢ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
59 |
|
difssd |
⊢ ( 𝜑 → ( ∪ 𝑇 ∖ 𝐴 ) ⊆ ∪ 𝑇 ) |
60 |
30 59
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ⊆ ∪ 𝑇 ) |
61 |
|
ssun1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) |
62 |
61
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) |
63 |
31
|
ntrss |
⊢ ( ( 𝑇 ∈ Top ∧ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ⊆ ∪ 𝑇 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ) |
64 |
21 60 62 63
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ) |
65 |
64 51
|
ssind |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) ) |
66 |
6 29
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑇 ) |
67 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
68 |
|
eqid |
⊢ ( 𝑇 ↾t 𝐴 ) = ( 𝑇 ↾t 𝐴 ) |
69 |
31 68
|
restntr |
⊢ ( ( 𝑇 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑇 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( ( int ‘ ( 𝑇 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) ) |
70 |
21 66 67 69
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) ) |
71 |
2
|
oveq1i |
⊢ ( 𝑇 ↾t 𝐴 ) = ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐴 ) |
72 |
15
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
73 |
|
restabs |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐴 ) = ( 𝐾 ↾t 𝐴 ) ) |
74 |
72 6 18 73
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐴 ) = ( 𝐾 ↾t 𝐴 ) ) |
75 |
71 74
|
syl5eq |
⊢ ( 𝜑 → ( 𝑇 ↾t 𝐴 ) = ( 𝐾 ↾t 𝐴 ) ) |
76 |
75
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( 𝑇 ↾t 𝐴 ) ) = ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ) |
77 |
76
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
78 |
70 77
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) = ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
79 |
65 78
|
sseqtrd |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
80 |
79
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
81 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) |
82 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
83 |
82
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → { 𝑥 } ⊆ ( 𝐴 ∩ 𝐵 ) ) |
84 |
83 22
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → { 𝑥 } ⊆ 𝐴 ) |
85 |
|
ssequn2 |
⊢ ( { 𝑥 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) |
86 |
84 85
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) |
87 |
81 86
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐴 ) |
88 |
87
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( 𝐾 ↾t 𝐴 ) ) |
89 |
88
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( int ‘ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) = ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ) |
90 |
|
undif1 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( ( 𝐴 ∩ 𝐵 ) ∪ { 𝑥 } ) |
91 |
|
ssequn2 |
⊢ ( { 𝑥 } ⊆ ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∪ { 𝑥 } ) = ( 𝐴 ∩ 𝐵 ) ) |
92 |
83 91
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∪ { 𝑥 } ) = ( 𝐴 ∩ 𝐵 ) ) |
93 |
90 92
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∩ 𝐵 ) ) |
94 |
89 93
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( int ‘ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) ‘ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
95 |
80 94
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) ‘ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) |
96 |
54 55 57 1 58 95
|
limcres |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) = ( 𝐺 limℂ 𝑥 ) ) |
97 |
47 96
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( 𝐺 limℂ 𝑥 ) ) |
98 |
97
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ↔ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) |
99 |
98
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
100 |
7 29
|
sseqtrd |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝑇 ) |
101 |
31
|
ntrin |
⊢ ( ( 𝑇 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑇 ∧ 𝐵 ⊆ ∪ 𝑇 ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
102 |
21 66 100 101
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
103 |
102
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ 𝑥 ∈ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
104 |
|
elin |
⊢ ( 𝑥 ∈ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
105 |
103 104
|
bitrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
106 |
105
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
107 |
99 106
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
108 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
109 |
107 108
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
110 |
|
eqid |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
111 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
112 |
5 111
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
113 |
2 1 110 4 112 23
|
eldv |
⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
114 |
2 1 3 4 5 6
|
eldv |
⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
115 |
114
|
anbi1cd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
116 |
109 113 115
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ) |