| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvres.k | ⊢ 𝐾  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | dvres.t | ⊢ 𝑇  =  ( 𝐾  ↾t  𝑆 ) | 
						
							| 3 |  | dvres.g | ⊢ 𝐺  =  ( 𝑧  ∈  ( 𝐴  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) ) | 
						
							| 4 |  | dvres.s | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 5 |  | dvres.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 6 |  | dvres.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑆 ) | 
						
							| 7 |  | dvres.b | ⊢ ( 𝜑  →  𝐵  ⊆  𝑆 ) | 
						
							| 8 |  | dvres.y | ⊢ ( 𝜑  →  𝑦  ∈  ℂ ) | 
						
							| 9 |  | difss | ⊢ ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ⊆  ( 𝐴  ∩  𝐵 ) | 
						
							| 10 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 11 | 9 10 | sstri | ⊢ ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ⊆  𝐵 | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  →  𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) ) | 
						
							| 13 | 11 12 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 14 | 13 | fvresd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 15 | 1 | cnfldtop | ⊢ 𝐾  ∈  Top | 
						
							| 16 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 17 |  | ssexg | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ℂ  ∈  V )  →  𝑆  ∈  V ) | 
						
							| 18 | 4 16 17 | sylancl | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 19 |  | resttop | ⊢ ( ( 𝐾  ∈  Top  ∧  𝑆  ∈  V )  →  ( 𝐾  ↾t  𝑆 )  ∈  Top ) | 
						
							| 20 | 15 18 19 | sylancr | ⊢ ( 𝜑  →  ( 𝐾  ↾t  𝑆 )  ∈  Top ) | 
						
							| 21 | 2 20 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  Top ) | 
						
							| 22 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 23 | 22 6 | sstrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  𝑆 ) | 
						
							| 24 | 1 | cnfldtopon | ⊢ 𝐾  ∈  ( TopOn ‘ ℂ ) | 
						
							| 25 |  | resttopon | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ ℂ )  ∧  𝑆  ⊆  ℂ )  →  ( 𝐾  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 ) ) | 
						
							| 26 | 24 4 25 | sylancr | ⊢ ( 𝜑  →  ( 𝐾  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 ) ) | 
						
							| 27 | 2 26 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ( TopOn ‘ 𝑆 ) ) | 
						
							| 28 |  | toponuni | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝑆 )  →  𝑆  =  ∪  𝑇 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  𝑆  =  ∪  𝑇 ) | 
						
							| 30 | 23 29 | sseqtrd | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  ∪  𝑇 ) | 
						
							| 31 |  | eqid | ⊢ ∪  𝑇  =  ∪  𝑇 | 
						
							| 32 | 31 | ntrss2 | ⊢ ( ( 𝑇  ∈  Top  ∧  ( 𝐴  ∩  𝐵 )  ⊆  ∪  𝑇 )  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 33 | 21 30 32 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 34 | 33 10 | sstrdi | ⊢ ( 𝜑  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  𝐵 ) | 
						
							| 35 | 34 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 36 | 35 | fvresd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 38 | 14 37 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  →  ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  →  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) )  =  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) ) | 
						
							| 40 | 39 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  =  ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) ) ) | 
						
							| 41 | 3 | reseq1i | ⊢ ( 𝐺  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  =  ( ( 𝑧  ∈  ( 𝐴  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) ) | 
						
							| 42 |  | ssdif | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊆  𝐴  →  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ⊆  ( 𝐴  ∖  { 𝑥 } ) ) | 
						
							| 43 |  | resmpt | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ⊆  ( 𝐴  ∖  { 𝑥 } )  →  ( ( 𝑧  ∈  ( 𝐴  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  =  ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) ) ) | 
						
							| 44 | 22 42 43 | mp2b | ⊢ ( ( 𝑧  ∈  ( 𝐴  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  =  ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) ) | 
						
							| 45 | 41 44 | eqtri | ⊢ ( 𝐺  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  =  ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) ) | 
						
							| 46 | 40 45 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  =  ( 𝐺  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  limℂ  𝑥 )  =  ( ( 𝐺  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  limℂ  𝑥 ) ) | 
						
							| 48 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 49 | 6 4 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝐴  ⊆  ℂ ) | 
						
							| 51 | 33 22 | sstrdi | ⊢ ( 𝜑  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  𝐴 ) | 
						
							| 52 | 51 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 53 | 48 50 52 | dvlem | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  ∧  𝑧  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) )  ∈  ℂ ) | 
						
							| 54 | 53 3 | fmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝐺 : ( 𝐴  ∖  { 𝑥 } ) ⟶ ℂ ) | 
						
							| 55 | 22 42 | mp1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ⊆  ( 𝐴  ∖  { 𝑥 } ) ) | 
						
							| 56 |  | difss | ⊢ ( 𝐴  ∖  { 𝑥 } )  ⊆  𝐴 | 
						
							| 57 | 56 50 | sstrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ℂ ) | 
						
							| 58 |  | eqid | ⊢ ( 𝐾  ↾t  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } ) )  =  ( 𝐾  ↾t  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) | 
						
							| 59 |  | difssd | ⊢ ( 𝜑  →  ( ∪  𝑇  ∖  𝐴 )  ⊆  ∪  𝑇 ) | 
						
							| 60 | 30 59 | unssd | ⊢ ( 𝜑  →  ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) )  ⊆  ∪  𝑇 ) | 
						
							| 61 |  | ssun1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) | 
						
							| 62 | 61 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) ) | 
						
							| 63 | 31 | ntrss | ⊢ ( ( 𝑇  ∈  Top  ∧  ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) )  ⊆  ∪  𝑇  ∧  ( 𝐴  ∩  𝐵 )  ⊆  ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) )  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) ) ) | 
						
							| 64 | 21 60 62 63 | syl3anc | ⊢ ( 𝜑  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) ) ) | 
						
							| 65 | 64 51 | ssind | ⊢ ( 𝜑  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) )  ∩  𝐴 ) ) | 
						
							| 66 | 6 29 | sseqtrd | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  𝑇 ) | 
						
							| 67 | 22 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  𝐴 ) | 
						
							| 68 |  | eqid | ⊢ ( 𝑇  ↾t  𝐴 )  =  ( 𝑇  ↾t  𝐴 ) | 
						
							| 69 | 31 68 | restntr | ⊢ ( ( 𝑇  ∈  Top  ∧  𝐴  ⊆  ∪  𝑇  ∧  ( 𝐴  ∩  𝐵 )  ⊆  𝐴 )  →  ( ( int ‘ ( 𝑇  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) )  =  ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) )  ∩  𝐴 ) ) | 
						
							| 70 | 21 66 67 69 | syl3anc | ⊢ ( 𝜑  →  ( ( int ‘ ( 𝑇  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) )  =  ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) )  ∩  𝐴 ) ) | 
						
							| 71 | 2 | oveq1i | ⊢ ( 𝑇  ↾t  𝐴 )  =  ( ( 𝐾  ↾t  𝑆 )  ↾t  𝐴 ) | 
						
							| 72 | 15 | a1i | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 73 |  | restabs | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐴  ⊆  𝑆  ∧  𝑆  ∈  V )  →  ( ( 𝐾  ↾t  𝑆 )  ↾t  𝐴 )  =  ( 𝐾  ↾t  𝐴 ) ) | 
						
							| 74 | 72 6 18 73 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐾  ↾t  𝑆 )  ↾t  𝐴 )  =  ( 𝐾  ↾t  𝐴 ) ) | 
						
							| 75 | 71 74 | eqtrid | ⊢ ( 𝜑  →  ( 𝑇  ↾t  𝐴 )  =  ( 𝐾  ↾t  𝐴 ) ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝜑  →  ( int ‘ ( 𝑇  ↾t  𝐴 ) )  =  ( int ‘ ( 𝐾  ↾t  𝐴 ) ) ) | 
						
							| 77 | 76 | fveq1d | ⊢ ( 𝜑  →  ( ( int ‘ ( 𝑇  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) )  =  ( ( int ‘ ( 𝐾  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 78 | 70 77 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴  ∩  𝐵 )  ∪  ( ∪  𝑇  ∖  𝐴 ) ) )  ∩  𝐴 )  =  ( ( int ‘ ( 𝐾  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 79 | 65 78 | sseqtrd | ⊢ ( 𝜑  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ⊆  ( ( int ‘ ( 𝐾  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 80 | 79 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝑥  ∈  ( ( int ‘ ( 𝐾  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 81 |  | undif1 | ⊢ ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } )  =  ( 𝐴  ∪  { 𝑥 } ) | 
						
							| 82 | 33 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝑥  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 83 | 82 | snssd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  { 𝑥 }  ⊆  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 84 | 83 22 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  { 𝑥 }  ⊆  𝐴 ) | 
						
							| 85 |  | ssequn2 | ⊢ ( { 𝑥 }  ⊆  𝐴  ↔  ( 𝐴  ∪  { 𝑥 } )  =  𝐴 ) | 
						
							| 86 | 84 85 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐴  ∪  { 𝑥 } )  =  𝐴 ) | 
						
							| 87 | 81 86 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } )  =  𝐴 ) | 
						
							| 88 | 87 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐾  ↾t  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } ) )  =  ( 𝐾  ↾t  𝐴 ) ) | 
						
							| 89 | 88 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( int ‘ ( 𝐾  ↾t  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) )  =  ( int ‘ ( 𝐾  ↾t  𝐴 ) ) ) | 
						
							| 90 |  | undif1 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ∪  { 𝑥 } )  =  ( ( 𝐴  ∩  𝐵 )  ∪  { 𝑥 } ) | 
						
							| 91 |  | ssequn2 | ⊢ ( { 𝑥 }  ⊆  ( 𝐴  ∩  𝐵 )  ↔  ( ( 𝐴  ∩  𝐵 )  ∪  { 𝑥 } )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 92 | 83 91 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐴  ∩  𝐵 )  ∪  { 𝑥 } )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 93 | 90 92 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ∪  { 𝑥 } )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 94 | 89 93 | fveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( int ‘ ( 𝐾  ↾t  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) ) ‘ ( ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ∪  { 𝑥 } ) )  =  ( ( int ‘ ( 𝐾  ↾t  𝐴 ) ) ‘ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 95 | 80 94 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  𝑥  ∈  ( ( int ‘ ( 𝐾  ↾t  ( ( 𝐴  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) ) ‘ ( ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) ) | 
						
							| 96 | 54 55 57 1 58 95 | limcres | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐺  ↾  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } ) )  limℂ  𝑥 )  =  ( 𝐺  limℂ  𝑥 ) ) | 
						
							| 97 | 47 96 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  limℂ  𝑥 )  =  ( 𝐺  limℂ  𝑥 ) ) | 
						
							| 98 | 97 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝑦  ∈  ( ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  limℂ  𝑥 )  ↔  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) ) ) | 
						
							| 99 | 98 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ∧  𝑦  ∈  ( ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  limℂ  𝑥 ) )  ↔  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) ) ) ) | 
						
							| 100 | 7 29 | sseqtrd | ⊢ ( 𝜑  →  𝐵  ⊆  ∪  𝑇 ) | 
						
							| 101 | 31 | ntrin | ⊢ ( ( 𝑇  ∈  Top  ∧  𝐴  ⊆  ∪  𝑇  ∧  𝐵  ⊆  ∪  𝑇 )  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  =  ( ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∩  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) | 
						
							| 102 | 21 66 100 101 | syl3anc | ⊢ ( 𝜑  →  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  =  ( ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∩  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) | 
						
							| 103 | 102 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ↔  𝑥  ∈  ( ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∩  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) | 
						
							| 104 |  | elin | ⊢ ( 𝑥  ∈  ( ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∩  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) )  ↔  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) | 
						
							| 105 | 103 104 | bitrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ↔  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) | 
						
							| 106 | 105 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) )  ↔  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) ) ) ) | 
						
							| 107 | 99 106 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ∧  𝑦  ∈  ( ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  limℂ  𝑥 ) )  ↔  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) ) ) ) | 
						
							| 108 |  | an32 | ⊢ ( ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) )  ↔  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) | 
						
							| 109 | 107 108 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ∧  𝑦  ∈  ( ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  limℂ  𝑥 ) )  ↔  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) | 
						
							| 110 |  | eqid | ⊢ ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  =  ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) ) | 
						
							| 111 |  | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ  →  ( 𝐹  ↾  𝐵 ) : ( 𝐴  ∩  𝐵 ) ⟶ ℂ ) | 
						
							| 112 | 5 111 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 ) : ( 𝐴  ∩  𝐵 ) ⟶ ℂ ) | 
						
							| 113 | 2 1 110 4 112 23 | eldv | ⊢ ( 𝜑  →  ( 𝑥 ( 𝑆  D  ( 𝐹  ↾  𝐵 ) ) 𝑦  ↔  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ ( 𝐴  ∩  𝐵 ) )  ∧  𝑦  ∈  ( ( 𝑧  ∈  ( ( 𝐴  ∩  𝐵 )  ∖  { 𝑥 } )  ↦  ( ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑧 )  −  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 ) )  /  ( 𝑧  −  𝑥 ) ) )  limℂ  𝑥 ) ) ) ) | 
						
							| 114 | 2 1 3 4 5 6 | eldv | ⊢ ( 𝜑  →  ( 𝑥 ( 𝑆  D  𝐹 ) 𝑦  ↔  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) ) ) ) | 
						
							| 115 | 114 | anbi1cd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 )  ∧  𝑥 ( 𝑆  D  𝐹 ) 𝑦 )  ↔  ( ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐴 )  ∧  𝑦  ∈  ( 𝐺  limℂ  𝑥 ) )  ∧  𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) | 
						
							| 116 | 109 113 115 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑥 ( 𝑆  D  ( 𝐹  ↾  𝐵 ) ) 𝑦  ↔  ( 𝑥  ∈  ( ( int ‘ 𝑇 ) ‘ 𝐵 )  ∧  𝑥 ( 𝑆  D  𝐹 ) 𝑦 ) ) ) |