| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvresntr.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
dvresntr.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 3 |
|
dvresntr.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 4 |
|
dvresntr.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
| 5 |
|
dvresntr.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 6 |
|
dvresntr.i |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 ) |
| 7 |
5 4
|
dvres |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 8 |
1 3 2 2 7
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ↾ 𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 9 |
|
ffn |
⊢ ( 𝐹 : 𝑋 ⟶ ℂ → 𝐹 Fn 𝑋 ) |
| 10 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝑋 → ( 𝐹 ↾ 𝑋 ) = 𝐹 ) |
| 11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) = 𝐹 ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ↾ 𝑋 ) ) = ( 𝑆 D 𝐹 ) ) |
| 13 |
5
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 14 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 15 |
13 1 14
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 16 |
4 15
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
| 17 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 19 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐽 ) |
| 20 |
16 19
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝐽 ) |
| 21 |
2 20
|
sseqtrd |
⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝐽 ) |
| 22 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 23 |
22
|
ntridm |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
| 24 |
18 21 23
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
| 25 |
6
|
fveq2d |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) |
| 26 |
24 25 6
|
3eqtr3d |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) |
| 27 |
26
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ 𝑌 ) ) |
| 28 |
22
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 29 |
18 21 28
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 30 |
6 29
|
eqsstrrd |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 31 |
30 2
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
| 32 |
5 4
|
dvres |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| 33 |
1 3 2 31 32
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| 34 |
6
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ 𝑌 ) ) |
| 35 |
27 33 34
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) ) |
| 36 |
8 12 35
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) ) |