Metamath Proof Explorer


Theorem dvresntr

Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvresntr.s ( 𝜑𝑆 ⊆ ℂ )
dvresntr.x ( 𝜑𝑋𝑆 )
dvresntr.f ( 𝜑𝐹 : 𝑋 ⟶ ℂ )
dvresntr.j 𝐽 = ( 𝐾t 𝑆 )
dvresntr.k 𝐾 = ( TopOpen ‘ ℂfld )
dvresntr.i ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 )
Assertion dvresntr ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 dvresntr.s ( 𝜑𝑆 ⊆ ℂ )
2 dvresntr.x ( 𝜑𝑋𝑆 )
3 dvresntr.f ( 𝜑𝐹 : 𝑋 ⟶ ℂ )
4 dvresntr.j 𝐽 = ( 𝐾t 𝑆 )
5 dvresntr.k 𝐾 = ( TopOpen ‘ ℂfld )
6 dvresntr.i ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 )
7 5 4 dvres ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋𝑆𝑋𝑆 ) ) → ( 𝑆 D ( 𝐹𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) )
8 1 3 2 2 7 syl22anc ( 𝜑 → ( 𝑆 D ( 𝐹𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) )
9 ffn ( 𝐹 : 𝑋 ⟶ ℂ → 𝐹 Fn 𝑋 )
10 fnresdm ( 𝐹 Fn 𝑋 → ( 𝐹𝑋 ) = 𝐹 )
11 3 9 10 3syl ( 𝜑 → ( 𝐹𝑋 ) = 𝐹 )
12 11 oveq2d ( 𝜑 → ( 𝑆 D ( 𝐹𝑋 ) ) = ( 𝑆 D 𝐹 ) )
13 5 cnfldtopon 𝐾 ∈ ( TopOn ‘ ℂ )
14 resttopon ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
15 13 1 14 sylancr ( 𝜑 → ( 𝐾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) )
16 4 15 eqeltrid ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑆 ) )
17 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top )
18 16 17 syl ( 𝜑𝐽 ∈ Top )
19 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = 𝐽 )
20 16 19 syl ( 𝜑𝑆 = 𝐽 )
21 2 20 sseqtrd ( 𝜑𝑋 𝐽 )
22 eqid 𝐽 = 𝐽
23 22 ntridm ( ( 𝐽 ∈ Top ∧ 𝑋 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) )
24 18 21 23 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) )
25 6 fveq2d ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑌 ) )
26 24 25 6 3eqtr3d ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 )
27 26 reseq2d ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ 𝑌 ) )
28 22 ntrss2 ( ( 𝐽 ∈ Top ∧ 𝑋 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 )
29 18 21 28 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 )
30 6 29 eqsstrrd ( 𝜑𝑌𝑋 )
31 30 2 sstrd ( 𝜑𝑌𝑆 )
32 5 4 dvres ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋𝑆𝑌𝑆 ) ) → ( 𝑆 D ( 𝐹𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) )
33 1 3 2 31 32 syl22anc ( 𝜑 → ( 𝑆 D ( 𝐹𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) )
34 6 reseq2d ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ 𝑌 ) )
35 27 33 34 3eqtr4rd ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( 𝑆 D ( 𝐹𝑌 ) ) )
36 8 12 35 3eqtr3d ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝐹𝑌 ) ) )