Step |
Hyp |
Ref |
Expression |
1 |
|
dvrval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvrval.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
dvrval.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
4 |
|
dvrval.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
5 |
|
dvrval.d |
⊢ / = ( /r ‘ 𝑅 ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
10 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
12 |
|
eqidd |
⊢ ( 𝑟 = 𝑅 → 𝑥 = 𝑥 ) |
13 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( invr ‘ 𝑟 ) = ( invr ‘ 𝑅 ) ) |
14 |
13 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( invr ‘ 𝑟 ) = 𝐼 ) |
15 |
14
|
fveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) |
16 |
11 12 15
|
oveq123d |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |
17 |
7 9 16
|
mpoeq123dv |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ) |
18 |
|
df-dvr |
⊢ /r = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) ) |
19 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
20 |
3
|
fvexi |
⊢ 𝑈 ∈ V |
21 |
19 20
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ∈ V |
22 |
17 18 21
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( /r ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ) |
23 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( /r ‘ 𝑅 ) = ∅ ) |
24 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) |
25 |
1 24
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
26 |
25
|
orcd |
⊢ ( ¬ 𝑅 ∈ V → ( 𝐵 = ∅ ∨ 𝑈 = ∅ ) ) |
27 |
|
0mpo0 |
⊢ ( ( 𝐵 = ∅ ∨ 𝑈 = ∅ ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) = ∅ ) |
28 |
26 27
|
syl |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) = ∅ ) |
29 |
23 28
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( /r ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ) |
30 |
22 29
|
pm2.61i |
⊢ ( /r ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |
31 |
5 30
|
eqtri |
⊢ / = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |