| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitdvcl.o |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
unitdvcl.d |
⊢ / = ( /r ‘ 𝑅 ) |
| 3 |
|
dvrid.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
4 1
|
unitcl |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 9 |
4 7 1 8 2
|
dvrval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 / 𝑋 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 10 |
6 9
|
sylancom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 / 𝑋 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 11 |
1 8 7 3
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) = 1 ) |
| 12 |
10 11
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 / 𝑋 ) = 1 ) |