Step |
Hyp |
Ref |
Expression |
1 |
|
dvrval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvrval.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
dvrval.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
4 |
|
dvrval.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
5 |
|
dvrval.d |
⊢ / = ( /r ‘ 𝑅 ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) = ( 𝑋 · ( 𝐼 ‘ 𝑦 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑌 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 · ( 𝐼 ‘ 𝑦 ) ) = ( 𝑋 · ( 𝐼 ‘ 𝑌 ) ) ) |
9 |
1 2 3 4 5
|
dvrfval |
⊢ / = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |
10 |
|
ovex |
⊢ ( 𝑋 · ( 𝐼 ‘ 𝑌 ) ) ∈ V |
11 |
6 8 9 10
|
ovmpo |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 · ( 𝐼 ‘ 𝑌 ) ) ) |