Step |
Hyp |
Ref |
Expression |
1 |
|
dvsinexp.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
3 |
2
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
4 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
5 |
4
|
a1i |
⊢ ( 𝜑 → sin : ℂ ⟶ ℂ ) |
6 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
7 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
8 |
7
|
a1i |
⊢ ( 𝜑 → cos : ℂ ⟶ ℂ ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( cos ‘ 𝑥 ) ∈ ℂ ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
11 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
13 |
10 12
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 𝑁 ) ∈ ℂ ) |
14 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℂ ) |
16 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
17 |
1 16
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
19 |
10 18
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
20 |
15 19
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
21 |
|
dvsin |
⊢ ( ℂ D sin ) = cos |
22 |
5
|
feqmptd |
⊢ ( 𝜑 → sin = ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D sin ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) ) |
24 |
8
|
feqmptd |
⊢ ( 𝜑 → cos = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ) |
25 |
21 23 24
|
3eqtr3a |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ) |
26 |
|
dvexp |
⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) |
27 |
1 26
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑦 = ( sin ‘ 𝑥 ) → ( 𝑦 ↑ 𝑁 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
29 |
|
oveq1 |
⊢ ( 𝑦 = ( sin ‘ 𝑥 ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) = ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑦 = ( sin ‘ 𝑥 ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) = ( 𝑁 · ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
31 |
3 3 6 9 13 20 25 27 28 30
|
dvmptco |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑁 · ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · ( cos ‘ 𝑥 ) ) ) ) |