Metamath Proof Explorer


Theorem dvsubf

Description: The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvsubf.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvsubf.f ( 𝜑𝐹 : 𝑋 ⟶ ℂ )
dvsubf.g ( 𝜑𝐺 : 𝑋 ⟶ ℂ )
dvsubf.fdv ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 )
dvsubf.gdv ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 )
Assertion dvsubf ( 𝜑 → ( 𝑆 D ( 𝐹f𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 dvsubf.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvsubf.f ( 𝜑𝐹 : 𝑋 ⟶ ℂ )
3 dvsubf.g ( 𝜑𝐺 : 𝑋 ⟶ ℂ )
4 dvsubf.fdv ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 )
5 dvsubf.gdv ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 )
6 2 ffvelrnda ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ ℂ )
7 dvfg ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ )
8 1 7 syl ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ )
9 4 feq2d ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) )
10 8 9 mpbid ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ )
11 10 ffvelrnda ( ( 𝜑𝑥𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ ℂ )
12 2 feqmptd ( 𝜑𝐹 = ( 𝑥𝑋 ↦ ( 𝐹𝑥 ) ) )
13 12 oveq2d ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐹𝑥 ) ) ) )
14 10 feqmptd ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) )
15 13 14 eqtr3d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐹𝑥 ) ) ) = ( 𝑥𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) )
16 3 ffvelrnda ( ( 𝜑𝑥𝑋 ) → ( 𝐺𝑥 ) ∈ ℂ )
17 dvfg ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ )
18 1 17 syl ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ )
19 5 feq2d ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) )
20 18 19 mpbid ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ )
21 20 ffvelrnda ( ( 𝜑𝑥𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ∈ ℂ )
22 3 feqmptd ( 𝜑𝐺 = ( 𝑥𝑋 ↦ ( 𝐺𝑥 ) ) )
23 22 oveq2d ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐺𝑥 ) ) ) )
24 20 feqmptd ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑥𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) )
25 23 24 eqtr3d ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐺𝑥 ) ) ) = ( 𝑥𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) )
26 1 6 11 15 16 21 25 dvmptsub ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( ( 𝐹𝑥 ) − ( 𝐺𝑥 ) ) ) ) = ( 𝑥𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) − ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) )
27 ovex ( 𝑆 D 𝐹 ) ∈ V
28 27 dmex dom ( 𝑆 D 𝐹 ) ∈ V
29 4 28 eqeltrrdi ( 𝜑𝑋 ∈ V )
30 29 6 16 12 22 offval2 ( 𝜑 → ( 𝐹f𝐺 ) = ( 𝑥𝑋 ↦ ( ( 𝐹𝑥 ) − ( 𝐺𝑥 ) ) ) )
31 30 oveq2d ( 𝜑 → ( 𝑆 D ( 𝐹f𝐺 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ( ( 𝐹𝑥 ) − ( 𝐺𝑥 ) ) ) ) )
32 29 11 21 14 24 offval2 ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) = ( 𝑥𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) − ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) )
33 26 31 32 3eqtr4d ( 𝜑 → ( 𝑆 D ( 𝐹f𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) )