Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
2 |
1
|
dyadf |
⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
3 |
|
ffn |
⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ( ℤ × ℕ0 ) ) |
4 |
|
ovelrn |
⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝐴 ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ) ) |
5 |
|
ovelrn |
⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) ↔ ( ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
7 |
2 3 6
|
mp2b |
⊢ ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) ↔ ( ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) |
8 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ↔ ( ∃ 𝑎 ∈ ℤ ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) |
10 |
|
reeanv |
⊢ ( ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℕ0 ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ↔ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) ) |
11 |
|
nn0re |
⊢ ( 𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ ) |
12 |
11
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → 𝑐 ∈ ℝ ) |
13 |
|
nn0re |
⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℝ ) |
14 |
13
|
ad2antll |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → 𝑑 ∈ ℝ ) |
15 |
1
|
dyaddisjlem |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ∧ 𝑐 ≤ 𝑑 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
16 |
|
ancom |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ↔ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) |
17 |
|
ancom |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ↔ ( 𝑑 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ) |
18 |
16 17
|
anbi12i |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ↔ ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ) ) |
19 |
1
|
dyaddisjlem |
⊢ ( ( ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ) ∧ 𝑑 ≤ 𝑐 ) → ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ) |
20 |
18 19
|
sylanb |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ∧ 𝑑 ≤ 𝑐 ) → ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ) |
21 |
|
orcom |
⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ) |
22 |
|
incom |
⊢ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) |
23 |
22
|
eqeq1i |
⊢ ( ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ↔ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) |
24 |
21 23
|
orbi12i |
⊢ ( ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ↔ ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
25 |
|
df-3or |
⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ↔ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ) |
26 |
|
df-3or |
⊢ ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ↔ ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
27 |
24 25 26
|
3bitr4i |
⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ∩ ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) = ∅ ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
28 |
20 27
|
sylib |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) ∧ 𝑑 ≤ 𝑐 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
29 |
12 14 15 28
|
lecasei |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
30 |
|
simpl |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → 𝐴 = ( 𝑎 𝐹 𝑐 ) ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( [,] ‘ 𝐴 ) = ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) |
32 |
|
simpr |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → 𝐵 = ( 𝑏 𝐹 𝑑 ) ) |
33 |
32
|
fveq2d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( [,] ‘ 𝐵 ) = ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) |
34 |
31 33
|
sseq12d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ↔ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) |
35 |
33 31
|
sseq12d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ↔ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ) |
36 |
30
|
fveq2d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( (,) ‘ 𝐴 ) = ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) |
37 |
32
|
fveq2d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( (,) ‘ 𝐵 ) = ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) |
38 |
36 37
|
ineq12d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) |
39 |
38
|
eqeq1d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ↔ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) |
40 |
34 35 39
|
3orbi123d |
⊢ ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ∨ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ⊆ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ∨ ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ∩ ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) = ∅ ) ) ) |
41 |
29 40
|
syl5ibrcom |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) ) → ( ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) ) |
42 |
41
|
rexlimdvva |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℕ0 ( 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) ) |
43 |
10 42
|
syl5bir |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) ) |
44 |
43
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ∃ 𝑐 ∈ ℕ0 𝐴 = ( 𝑎 𝐹 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 𝐵 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) |
45 |
9 44
|
sylbi |
⊢ ( ( 𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹 ) → ( ( [,] ‘ 𝐴 ) ⊆ ( [,] ‘ 𝐵 ) ∨ ( [,] ‘ 𝐵 ) ⊆ ( [,] ‘ 𝐴 ) ∨ ( ( (,) ‘ 𝐴 ) ∩ ( (,) ‘ 𝐵 ) ) = ∅ ) ) |