| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℕ0  ↦  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉 ) | 
						
							| 2 | 1 | dyadf | ⊢ 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 3 |  | ffn | ⊢ ( 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝐹  Fn  ( ℤ  ×  ℕ0 ) ) | 
						
							| 4 |  | ovelrn | ⊢ ( 𝐹  Fn  ( ℤ  ×  ℕ0 )  →  ( 𝐴  ∈  ran  𝐹  ↔  ∃ 𝑎  ∈  ℤ ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 ) ) ) | 
						
							| 5 |  | ovelrn | ⊢ ( 𝐹  Fn  ( ℤ  ×  ℕ0 )  →  ( 𝐵  ∈  ran  𝐹  ↔  ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝐹  Fn  ( ℤ  ×  ℕ0 )  →  ( ( 𝐴  ∈  ran  𝐹  ∧  𝐵  ∈  ran  𝐹 )  ↔  ( ∃ 𝑎  ∈  ℤ ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) ) ) ) | 
						
							| 7 | 2 3 6 | mp2b | ⊢ ( ( 𝐴  ∈  ran  𝐹  ∧  𝐵  ∈  ran  𝐹 )  ↔  ( ∃ 𝑎  ∈  ℤ ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 8 |  | reeanv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) )  ↔  ( ∃ 𝑎  ∈  ℤ ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 9 | 7 8 | bitr4i | ⊢ ( ( 𝐴  ∈  ran  𝐹  ∧  𝐵  ∈  ran  𝐹 )  ↔  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 10 |  | reeanv | ⊢ ( ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℕ0 ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  ↔  ( ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 11 |  | nn0re | ⊢ ( 𝑐  ∈  ℕ0  →  𝑐  ∈  ℝ ) | 
						
							| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 13 |  | nn0re | ⊢ ( 𝑑  ∈  ℕ0  →  𝑑  ∈  ℝ ) | 
						
							| 14 | 13 | ad2antll | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  →  𝑑  ∈  ℝ ) | 
						
							| 15 | 1 | dyaddisjlem | ⊢ ( ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  ∧  𝑐  ≤  𝑑 )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) | 
						
							| 16 |  | ancom | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ↔  ( 𝑏  ∈  ℤ  ∧  𝑎  ∈  ℤ ) ) | 
						
							| 17 |  | ancom | ⊢ ( ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 )  ↔  ( 𝑑  ∈  ℕ0  ∧  𝑐  ∈  ℕ0 ) ) | 
						
							| 18 | 16 17 | anbi12i | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  ↔  ( ( 𝑏  ∈  ℤ  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑐  ∈  ℕ0 ) ) ) | 
						
							| 19 | 1 | dyaddisjlem | ⊢ ( ( ( ( 𝑏  ∈  ℤ  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑐  ∈  ℕ0 ) )  ∧  𝑑  ≤  𝑐 )  →  ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ∅ ) ) | 
						
							| 20 | 18 19 | sylanb | ⊢ ( ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  ∧  𝑑  ≤  𝑐 )  →  ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ∅ ) ) | 
						
							| 21 |  | orcom | ⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) )  ↔  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ) | 
						
							| 22 |  | incom | ⊢ ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 23 | 22 | eqeq1i | ⊢ ( ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ∅  ↔  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) | 
						
							| 24 | 21 23 | orbi12i | ⊢ ( ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) )  ∨  ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ∅ )  ↔  ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) | 
						
							| 25 |  | df-3or | ⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ∅ )  ↔  ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) )  ∨  ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ∅ ) ) | 
						
							| 26 |  | df-3or | ⊢ ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ )  ↔  ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) | 
						
							| 27 | 24 25 26 | 3bitr4i | ⊢ ( ( ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( ( (,) ‘ ( 𝑏 𝐹 𝑑 ) )  ∩  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) )  =  ∅ )  ↔  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) | 
						
							| 28 | 20 27 | sylib | ⊢ ( ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  ∧  𝑑  ≤  𝑐 )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) | 
						
							| 29 | 12 14 15 28 | lecasei | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  𝐴  =  ( 𝑎 𝐹 𝑐 ) ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( [,] ‘ 𝐴 )  =  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  𝐵  =  ( 𝑏 𝐹 𝑑 ) ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( [,] ‘ 𝐵 )  =  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 34 | 31 33 | sseq12d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ 𝐴 )  ⊆  ( [,] ‘ 𝐵 )  ↔  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) | 
						
							| 35 | 33 31 | sseq12d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ 𝐵 )  ⊆  ( [,] ‘ 𝐴 )  ↔  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) ) | 
						
							| 36 | 30 | fveq2d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( (,) ‘ 𝐴 )  =  ( (,) ‘ ( 𝑎 𝐹 𝑐 ) ) ) | 
						
							| 37 | 32 | fveq2d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( (,) ‘ 𝐵 )  =  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) | 
						
							| 38 | 36 37 | ineq12d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ∅  ↔  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) | 
						
							| 40 | 34 35 39 | 3orbi123d | ⊢ ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( ( [,] ‘ 𝐴 )  ⊆  ( [,] ‘ 𝐵 )  ∨  ( [,] ‘ 𝐵 )  ⊆  ( [,] ‘ 𝐴 )  ∨  ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ∅ )  ↔  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ∨  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  ⊆  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ∨  ( ( (,) ‘ ( 𝑎 𝐹 𝑐 ) )  ∩  ( (,) ‘ ( 𝑏 𝐹 𝑑 ) ) )  =  ∅ ) ) ) | 
						
							| 41 | 29 40 | syl5ibrcom | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 ) )  →  ( ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ 𝐴 )  ⊆  ( [,] ‘ 𝐵 )  ∨  ( [,] ‘ 𝐵 )  ⊆  ( [,] ‘ 𝐴 )  ∨  ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ∅ ) ) ) | 
						
							| 42 | 41 | rexlimdvva | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℕ0 ( 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ 𝐴 )  ⊆  ( [,] ‘ 𝐵 )  ∨  ( [,] ‘ 𝐵 )  ⊆  ( [,] ‘ 𝐴 )  ∨  ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ∅ ) ) ) | 
						
							| 43 | 10 42 | biimtrrid | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( ( ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ 𝐴 )  ⊆  ( [,] ‘ 𝐵 )  ∨  ( [,] ‘ 𝐵 )  ⊆  ( [,] ‘ 𝐴 )  ∨  ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ∅ ) ) ) | 
						
							| 44 | 43 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ∃ 𝑐  ∈  ℕ0 𝐴  =  ( 𝑎 𝐹 𝑐 )  ∧  ∃ 𝑑  ∈  ℕ0 𝐵  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ 𝐴 )  ⊆  ( [,] ‘ 𝐵 )  ∨  ( [,] ‘ 𝐵 )  ⊆  ( [,] ‘ 𝐴 )  ∨  ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ∅ ) ) | 
						
							| 45 | 9 44 | sylbi | ⊢ ( ( 𝐴  ∈  ran  𝐹  ∧  𝐵  ∈  ran  𝐹 )  →  ( ( [,] ‘ 𝐴 )  ⊆  ( [,] ‘ 𝐵 )  ∨  ( [,] ‘ 𝐵 )  ⊆  ( [,] ‘ 𝐴 )  ∨  ( ( (,) ‘ 𝐴 )  ∩  ( (,) ‘ 𝐵 ) )  =  ∅ ) ) |