| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 2 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℤ ) |
| 3 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ℕ0 ) |
| 4 |
1
|
dyadval |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 6 |
5
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) = ( (,) ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
| 7 |
|
df-ov |
⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( (,) ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 8 |
6 7
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 9 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ∈ ℤ ) |
| 10 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ℕ0 ) |
| 11 |
1
|
dyadval |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0 ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
| 13 |
12
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) = ( (,) ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) ) |
| 14 |
|
df-ov |
⊢ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) = ( (,) ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
| 15 |
13 14
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
| 16 |
8 15
|
ineq12d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) ) |
| 17 |
|
incom |
⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 18 |
16 17
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
| 20 |
2
|
zred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℂ ) |
| 22 |
|
2nn |
⊢ 2 ∈ ℕ |
| 23 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
| 24 |
22 3 23
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
| 25 |
24
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ∈ ℂ ) |
| 26 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐷 ∈ ℕ0 ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) |
| 27 |
22 10 26
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) |
| 28 |
27
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℂ ) |
| 29 |
24
|
nnne0d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ≠ 0 ) |
| 30 |
21 25 28 29
|
div13d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) = ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · 𝐴 ) ) |
| 31 |
|
2cnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 2 ∈ ℂ ) |
| 32 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 33 |
32
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 2 ≠ 0 ) |
| 34 |
3
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ℤ ) |
| 35 |
10
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ℤ ) |
| 36 |
31 33 34 35
|
expsubd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) = ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) ) |
| 37 |
|
2z |
⊢ 2 ∈ ℤ |
| 38 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ≤ 𝐷 ) |
| 39 |
|
znn0sub |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) ) |
| 40 |
34 35 39
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) ) |
| 41 |
38 40
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐷 − 𝐶 ) ∈ ℕ0 ) |
| 42 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) ∈ ℤ ) |
| 43 |
37 41 42
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) ∈ ℤ ) |
| 44 |
36 43
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) ∈ ℤ ) |
| 45 |
44 2
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · 𝐴 ) ∈ ℤ ) |
| 46 |
30 45
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) |
| 47 |
|
zltp1le |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) → ( 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 48 |
9 46 47
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 49 |
9
|
zred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ∈ ℝ ) |
| 50 |
20 24
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 51 |
27
|
nnred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℝ ) |
| 52 |
27
|
nngt0d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 0 < ( 2 ↑ 𝐷 ) ) |
| 53 |
|
ltdivmul2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 54 |
49 50 51 52 53
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 55 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
| 56 |
49 55
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 57 |
|
ledivmul2 |
⊢ ( ( ( 𝐵 + 1 ) ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 58 |
56 50 51 52 57
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 59 |
48 54 58
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) ) |
| 60 |
49 27
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
| 61 |
60
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) |
| 62 |
56 27
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
| 63 |
62
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) |
| 64 |
50
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
| 65 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 66 |
20 65
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 67 |
66 24
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 68 |
67
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
| 69 |
|
ioodisj |
⊢ ( ( ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ) ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) |
| 70 |
69
|
ex |
⊢ ( ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
| 71 |
61 63 64 68 70
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
| 72 |
59 71
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
| 73 |
72
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) |
| 74 |
19 73
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) |
| 75 |
74
|
3mix3d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 76 |
50
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 77 |
67
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 78 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) |
| 79 |
66
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℂ ) |
| 80 |
79 25 28 29
|
div13d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) = ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · ( 𝐴 + 1 ) ) ) |
| 81 |
2
|
peano2zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℤ ) |
| 82 |
44 81
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · ( 𝐴 + 1 ) ) ∈ ℤ ) |
| 83 |
80 82
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) |
| 84 |
|
zltp1le |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) → ( 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 85 |
9 83 84
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 86 |
|
ltdivmul2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 87 |
49 67 51 52 86
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 88 |
|
ledivmul2 |
⊢ ( ( ( 𝐵 + 1 ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 89 |
56 67 51 52 88
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
| 90 |
85 87 89
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 91 |
90
|
biimpa |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
| 92 |
91
|
adantrl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
| 93 |
|
iccss |
⊢ ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 94 |
76 77 78 92 93
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 95 |
12
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) ) |
| 96 |
|
df-ov |
⊢ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
| 97 |
95 96
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
| 98 |
97
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
| 99 |
5
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
| 100 |
|
df-ov |
⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 101 |
99 100
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 102 |
101
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 103 |
94 98 102
|
3sstr4d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ) |
| 104 |
103
|
3mix2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 105 |
104
|
anassrs |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 106 |
16
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) ) |
| 107 |
|
ioodisj |
⊢ ( ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ∧ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) |
| 108 |
107
|
ex |
⊢ ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ∧ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) ) |
| 109 |
64 68 61 63 108
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) ) |
| 110 |
109
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) |
| 111 |
106 110
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) |
| 112 |
111
|
3mix3d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 113 |
112
|
adantlr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 114 |
60
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
| 115 |
67
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 116 |
105 113 114 115
|
ltlecasei |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
| 117 |
75 116 60 50
|
ltlecasei |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |