Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
2 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℤ ) |
3 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ℕ0 ) |
4 |
1
|
dyadval |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
6 |
5
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) = ( (,) ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
7 |
|
df-ov |
⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( (,) ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
8 |
6 7
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
9 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ∈ ℤ ) |
10 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ℕ0 ) |
11 |
1
|
dyadval |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0 ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
13 |
12
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) = ( (,) ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) ) |
14 |
|
df-ov |
⊢ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) = ( (,) ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
15 |
13 14
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
16 |
8 15
|
ineq12d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) ) |
17 |
|
incom |
⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
18 |
16 17
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
19 |
18
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
20 |
2
|
zred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐴 ∈ ℂ ) |
22 |
|
2nn |
⊢ 2 ∈ ℕ |
23 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
24 |
22 3 23
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
25 |
24
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ∈ ℂ ) |
26 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐷 ∈ ℕ0 ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) |
27 |
22 10 26
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) |
28 |
27
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℂ ) |
29 |
24
|
nnne0d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐶 ) ≠ 0 ) |
30 |
21 25 28 29
|
div13d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) = ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · 𝐴 ) ) |
31 |
|
2cnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 2 ∈ ℂ ) |
32 |
|
2ne0 |
⊢ 2 ≠ 0 |
33 |
32
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 2 ≠ 0 ) |
34 |
3
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ℤ ) |
35 |
10
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ℤ ) |
36 |
31 33 34 35
|
expsubd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) = ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) ) |
37 |
|
2z |
⊢ 2 ∈ ℤ |
38 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ≤ 𝐷 ) |
39 |
|
znn0sub |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) ) |
40 |
34 35 39
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) ) |
41 |
38 40
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐷 − 𝐶 ) ∈ ℕ0 ) |
42 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐷 − 𝐶 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) ∈ ℤ ) |
43 |
37 41 42
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ ( 𝐷 − 𝐶 ) ) ∈ ℤ ) |
44 |
36 43
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) ∈ ℤ ) |
45 |
44 2
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · 𝐴 ) ∈ ℤ ) |
46 |
30 45
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) |
47 |
|
zltp1le |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) → ( 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
48 |
9 46 47
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
49 |
9
|
zred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 𝐵 ∈ ℝ ) |
50 |
20 24
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
51 |
27
|
nnred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 2 ↑ 𝐷 ) ∈ ℝ ) |
52 |
27
|
nngt0d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → 0 < ( 2 ↑ 𝐷 ) ) |
53 |
|
ltdivmul2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
54 |
49 50 51 52 53
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
55 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
56 |
49 55
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
57 |
|
ledivmul2 |
⊢ ( ( ( 𝐵 + 1 ) ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
58 |
56 50 51 52 57
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
59 |
48 54 58
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ↔ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) ) |
60 |
49 27
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
61 |
60
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) |
62 |
56 27
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
63 |
62
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) |
64 |
50
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
65 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
66 |
20 65
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
67 |
66 24
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
68 |
67
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
69 |
|
ioodisj |
⊢ ( ( ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ) ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) |
70 |
69
|
ex |
⊢ ( ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
71 |
61 63 64 68 70
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
72 |
59 71
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) ) |
73 |
72
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ∩ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) = ∅ ) |
74 |
19 73
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) |
75 |
74
|
3mix3d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
76 |
50
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
77 |
67
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
78 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) |
79 |
66
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℂ ) |
80 |
79 25 28 29
|
div13d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) = ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · ( 𝐴 + 1 ) ) ) |
81 |
2
|
peano2zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 + 1 ) ∈ ℤ ) |
82 |
44 81
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 2 ↑ 𝐷 ) / ( 2 ↑ 𝐶 ) ) · ( 𝐴 + 1 ) ) ∈ ℤ ) |
83 |
80 82
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) |
84 |
|
zltp1le |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ∈ ℤ ) → ( 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
85 |
9 83 84
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
86 |
|
ltdivmul2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
87 |
49 67 51 52 86
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ 𝐵 < ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
88 |
|
ledivmul2 |
⊢ ( ( ( 𝐵 + 1 ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
89 |
56 67 51 52 88
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( 𝐵 + 1 ) ≤ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) · ( 2 ↑ 𝐷 ) ) ) ) |
90 |
85 87 89
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ↔ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
91 |
90
|
biimpa |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
92 |
91
|
adantrl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
93 |
|
iccss |
⊢ ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
94 |
76 77 78 92 93
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
95 |
12
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) ) |
96 |
|
df-ov |
⊢ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
97 |
95 96
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
98 |
97
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
99 |
5
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
100 |
|
df-ov |
⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
101 |
99 100
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
102 |
101
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
103 |
94 98 102
|
3sstr4d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ) |
104 |
103
|
3mix2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
105 |
104
|
anassrs |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) ∧ ( 𝐵 / ( 2 ↑ 𝐷 ) ) < ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
106 |
16
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) ) |
107 |
|
ioodisj |
⊢ ( ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ∧ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) |
108 |
107
|
ex |
⊢ ( ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) ∧ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ* ) ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) ) |
109 |
64 68 61 63 108
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) ) |
110 |
109
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) (,) ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ∩ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) (,) ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) = ∅ ) |
111 |
106 110
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) |
112 |
111
|
3mix3d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
113 |
112
|
adantlr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
114 |
60
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
115 |
67
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
116 |
105 113 114 115
|
ltlecasei |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐵 / ( 2 ↑ 𝐷 ) ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |
117 |
75 116 60 50
|
ltlecasei |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∨ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ∨ ( ( (,) ‘ ( 𝐴 𝐹 𝐶 ) ) ∩ ( (,) ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ∅ ) ) |