| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℕ0  ↦  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉 ) | 
						
							| 2 |  | zre | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℝ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  𝑥  ∈  ℝ ) | 
						
							| 4 | 3 | lep1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  𝑥  ≤  ( 𝑥  +  1 ) ) | 
						
							| 5 |  | peano2re | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 6 | 3 5 | syl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 7 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 8 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑦  ∈  ℕ0 )  →  ( 2 ↑ 𝑦 )  ∈  ℕ ) | 
						
							| 9 | 7 8 | mpan | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ 𝑦 )  ∈  ℕ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 2 ↑ 𝑦 )  ∈  ℕ ) | 
						
							| 11 | 10 | nnred | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 2 ↑ 𝑦 )  ∈  ℝ ) | 
						
							| 12 | 10 | nngt0d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  0  <  ( 2 ↑ 𝑦 ) ) | 
						
							| 13 |  | lediv1 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 𝑥  +  1 )  ∈  ℝ  ∧  ( ( 2 ↑ 𝑦 )  ∈  ℝ  ∧  0  <  ( 2 ↑ 𝑦 ) ) )  →  ( 𝑥  ≤  ( 𝑥  +  1 )  ↔  ( 𝑥  /  ( 2 ↑ 𝑦 ) )  ≤  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) ) ) | 
						
							| 14 | 3 6 11 12 13 | syl112anc | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑥  ≤  ( 𝑥  +  1 )  ↔  ( 𝑥  /  ( 2 ↑ 𝑦 ) )  ≤  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) ) ) | 
						
							| 15 | 4 14 | mpbid | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑥  /  ( 2 ↑ 𝑦 ) )  ≤  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) ) | 
						
							| 16 |  | df-br | ⊢ ( ( 𝑥  /  ( 2 ↑ 𝑦 ) )  ≤  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) )  ↔  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉  ∈   ≤  ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉  ∈   ≤  ) | 
						
							| 18 |  | nndivre | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 2 ↑ 𝑦 )  ∈  ℕ )  →  ( 𝑥  /  ( 2 ↑ 𝑦 ) )  ∈  ℝ ) | 
						
							| 19 | 2 9 18 | syl2an | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑥  /  ( 2 ↑ 𝑦 ) )  ∈  ℝ ) | 
						
							| 20 | 2 5 | syl | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 21 |  | nndivre | ⊢ ( ( ( 𝑥  +  1 )  ∈  ℝ  ∧  ( 2 ↑ 𝑦 )  ∈  ℕ )  →  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) )  ∈  ℝ ) | 
						
							| 22 | 20 9 21 | syl2an | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) )  ∈  ℝ ) | 
						
							| 23 | 19 22 | opelxpd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 24 | 17 23 | elind | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 25 | 24 | rgen2 | ⊢ ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℕ0 〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 26 | 1 | fmpo | ⊢ ( ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℕ0 〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↔  𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 27 | 25 26 | mpbi | ⊢ 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) |