| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dyadmbl.1 | 
							⊢ 𝐹  =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℕ0  ↦  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							ltweuz | 
							⊢  <   We  ( ℤ≥ ‘ 0 )  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →   <   We  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 5 | 
							
								4
							 | 
							rabex | 
							⊢ { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ⊆  ℕ0  | 
						
						
							| 8 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sseqtri | 
							⊢ { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ⊆  ( ℤ≥ ‘ 0 )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ⊆  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							id | 
							⊢ ( 𝐴  ≠  ∅  →  𝐴  ≠  ∅ )  | 
						
						
							| 12 | 
							
								1
							 | 
							dyadf | 
							⊢ 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝐹  Fn  ( ℤ  ×  ℕ0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ovelrn | 
							⊢ ( 𝐹  Fn  ( ℤ  ×  ℕ0 )  →  ( 𝑧  ∈  ran  𝐹  ↔  ∃ 𝑎  ∈  ℤ ∃ 𝑛  ∈  ℕ0 𝑧  =  ( 𝑎 𝐹 𝑛 ) ) )  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							mp2b | 
							⊢ ( 𝑧  ∈  ran  𝐹  ↔  ∃ 𝑎  ∈  ℤ ∃ 𝑛  ∈  ℕ0 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							rexcom | 
							⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑛  ∈  ℕ0 𝑧  =  ( 𝑎 𝐹 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylbb | 
							⊢ ( 𝑧  ∈  ran  𝐹  →  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rgen | 
							⊢ ∀ 𝑧  ∈  ran  𝐹 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 )  | 
						
						
							| 19 | 
							
								
							 | 
							ssralv | 
							⊢ ( 𝐴  ⊆  ran  𝐹  →  ( ∀ 𝑧  ∈  ran  𝐹 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 )  →  ∀ 𝑧  ∈  𝐴 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							mpi | 
							⊢ ( 𝐴  ⊆  ran  𝐹  →  ∀ 𝑧  ∈  𝐴 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							r19.2z | 
							⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  →  ∃ 𝑧  ∈  𝐴 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 22 | 
							
								11 20 21
							 | 
							syl2anr | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑧  ∈  𝐴 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							rexcom | 
							⊢ ( ∃ 𝑧  ∈  𝐴 ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylib | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑛  ∈  ℕ0 ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ≠  ∅  ↔  ∃ 𝑛  ∈  ℕ0 ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							sylibr | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ≠  ∅ )  | 
						
						
							| 27 | 
							
								
							 | 
							wereu | 
							⊢ ( (  <   We  ( ℤ≥ ‘ 0 )  ∧  ( { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ∈  V  ∧  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ⊆  ( ℤ≥ ‘ 0 )  ∧  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ≠  ∅ ) )  →  ∃! 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐 )  | 
						
						
							| 28 | 
							
								3 6 10 26 27
							 | 
							syl13anc | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ∃! 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐 )  | 
						
						
							| 29 | 
							
								
							 | 
							reurex | 
							⊢ ( ∃! 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐  →  ∃ 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐 )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐 )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑐  →  ( 𝑎 𝐹 𝑛 )  =  ( 𝑎 𝐹 𝑐 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							eqeq2d | 
							⊢ ( 𝑛  =  𝑐  →  ( 𝑧  =  ( 𝑎 𝐹 𝑛 )  ↔  𝑧  =  ( 𝑎 𝐹 𝑐 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							2rexbidv | 
							⊢ ( 𝑛  =  𝑐  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							elrab | 
							⊢ ( 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  ↔  ( 𝑐  ∈  ℕ0  ∧  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑧  =  𝑤  →  ( 𝑧  =  ( 𝑎 𝐹 𝑛 )  ↔  𝑤  =  ( 𝑎 𝐹 𝑛 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑎  =  𝑏  →  ( 𝑎 𝐹 𝑛 )  =  ( 𝑏 𝐹 𝑛 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqeq2d | 
							⊢ ( 𝑎  =  𝑏  →  ( 𝑤  =  ( 𝑎 𝐹 𝑛 )  ↔  𝑤  =  ( 𝑏 𝐹 𝑛 ) ) )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							cbvrex2vw | 
							⊢ ( ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 )  ↔  ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑛 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑑  →  ( 𝑏 𝐹 𝑛 )  =  ( 𝑏 𝐹 𝑑 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							eqeq2d | 
							⊢ ( 𝑛  =  𝑑  →  ( 𝑤  =  ( 𝑏 𝐹 𝑛 )  ↔  𝑤  =  ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							2rexbidv | 
							⊢ ( 𝑛  =  𝑑  →  ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑛 )  ↔  ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 42 | 
							
								38 41
							 | 
							bitrid | 
							⊢ ( 𝑛  =  𝑑  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 )  ↔  ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralrab | 
							⊢ ( ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐  ↔  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							r19.23v | 
							⊢ ( ∀ 𝑤  ∈  𝐴 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ↔  ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							ralbii | 
							⊢ ( ∀ 𝑑  ∈  ℕ0 ∀ 𝑤  ∈  𝐴 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ↔  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							ralcom | 
							⊢ ( ∀ 𝑑  ∈  ℕ0 ∀ 𝑤  ∈  𝐴 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							bitr3i | 
							⊢ ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  →  𝐴  ⊆  ran  𝐹 )  | 
						
						
							| 49 | 
							
								48
							 | 
							sselda | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  ran  𝐹 )  | 
						
						
							| 50 | 
							
								
							 | 
							ovelrn | 
							⊢ ( 𝐹  Fn  ( ℤ  ×  ℕ0 )  →  ( 𝑤  ∈  ran  𝐹  ↔  ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝑤  =  ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 51 | 
							
								12 13 50
							 | 
							mp2b | 
							⊢ ( 𝑤  ∈  ran  𝐹  ↔  ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝑤  =  ( 𝑏 𝐹 𝑑 ) )  | 
						
						
							| 52 | 
							
								49 51
							 | 
							sylib | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  →  ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝑤  =  ( 𝑏 𝐹 𝑑 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							rexcom | 
							⊢ ( ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝑤  =  ( 𝑏 𝐹 𝑑 )  ↔  ∃ 𝑑  ∈  ℕ0 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							r19.29 | 
							⊢ ( ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ∧  ∃ 𝑑  ∈  ℕ0 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) )  →  ∃ 𝑑  ∈  ℕ0 ( ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ∧  ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							expcom | 
							⊢ ( ∃ 𝑑  ∈  ℕ0 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ∃ 𝑑  ∈  ℕ0 ( ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ∧  ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) ) ) )  | 
						
						
							| 56 | 
							
								53 55
							 | 
							sylbi | 
							⊢ ( ∃ 𝑏  ∈  ℤ ∃ 𝑑  ∈  ℕ0 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ∃ 𝑑  ∈  ℕ0 ( ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ∧  ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) ) ) )  | 
						
						
							| 57 | 
							
								52 56
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  →  ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ∃ 𝑑  ∈  ℕ0 ( ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ∧  ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  →  𝑎  ∈  ℤ )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  𝑎  ∈  ℤ )  | 
						
						
							| 60 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  𝑏  ∈  ℤ )  | 
						
						
							| 61 | 
							
								
							 | 
							simp-5r | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  𝑐  ∈  ℕ0 )  | 
						
						
							| 62 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  𝑑  ∈  ℕ0 )  | 
						
						
							| 63 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  ¬  𝑑  <  𝑐 )  | 
						
						
							| 64 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 65 | 
							
								1 59 60 61 62 63 64
							 | 
							dyadmaxlem | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  ( 𝑎  =  𝑏  ∧  𝑐  =  𝑑 ) )  | 
						
						
							| 66 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑎  =  𝑏  ∧  𝑐  =  𝑑 )  →  ( 𝑎 𝐹 𝑐 )  =  ( 𝑏 𝐹 𝑑 ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							syl | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( ¬  𝑑  <  𝑐  ∧  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  →  ( 𝑎 𝐹 𝑐 )  =  ( 𝑏 𝐹 𝑑 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							exp32 | 
							⊢ ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ¬  𝑑  <  𝑐  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  →  ( 𝑎 𝐹 𝑐 )  =  ( 𝑏 𝐹 𝑑 ) ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( [,] ‘ 𝑤 )  =  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							sseq2d | 
							⊢ ( 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  ↔  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ( 𝑎 𝐹 𝑐 )  =  𝑤  ↔  ( 𝑎 𝐹 𝑐 )  =  ( 𝑏 𝐹 𝑑 ) ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							imbi12d | 
							⊢ ( 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 )  ↔  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  →  ( 𝑎 𝐹 𝑐 )  =  ( 𝑏 𝐹 𝑑 ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							imbi2d | 
							⊢ ( 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ( ¬  𝑑  <  𝑐  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) )  ↔  ( ¬  𝑑  <  𝑐  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ ( 𝑏 𝐹 𝑑 ) )  →  ( 𝑎 𝐹 𝑐 )  =  ( 𝑏 𝐹 𝑑 ) ) ) ) )  | 
						
						
							| 74 | 
							
								68 73
							 | 
							syl5ibrcom | 
							⊢ ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  ( 𝑑  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ¬  𝑑  <  𝑐  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							anassrs | 
							⊢ ( ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  →  ( 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ¬  𝑑  <  𝑐  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							rexlimdva | 
							⊢ ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑑  ∈  ℕ0 )  →  ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ¬  𝑑  <  𝑐  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							a2d | 
							⊢ ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							impd | 
							⊢ ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ∧  ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							rexlimdva | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  →  ( ∃ 𝑑  ∈  ℕ0 ( ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  ∧  ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 ) )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) )  | 
						
						
							| 80 | 
							
								57 79
							 | 
							syld | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  𝑤  ∈  𝐴 )  →  ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							ralimdva | 
							⊢ ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  →  ( ∀ 𝑤  ∈  𝐴 ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) )  | 
						
						
							| 82 | 
							
								47 81
							 | 
							biimtrid | 
							⊢ ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  →  ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  ∧  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							an32s | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ( [,] ‘ 𝑧 )  =  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							sseq1d | 
							⊢ ( 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  ↔  ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ( 𝑧  =  𝑤  ↔  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) )  | 
						
						
							| 88 | 
							
								86 87
							 | 
							imbi12d | 
							⊢ ( 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ( ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							ralbidv | 
							⊢ ( 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ( ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑎 𝐹 𝑐 )  =  𝑤 ) ) )  | 
						
						
							| 90 | 
							
								84 89
							 | 
							syl5ibrcom | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑎  ∈  ℤ ) )  →  ( 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							anassrs | 
							⊢ ( ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  ∧  𝑧  ∈  𝐴 )  ∧  𝑎  ∈  ℤ )  →  ( 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							rexlimdva | 
							⊢ ( ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							reximdva | 
							⊢ ( ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  ∧  ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 ) )  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							ex | 
							⊢ ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  →  ( ∀ 𝑑  ∈  ℕ0 ( ∃ 𝑤  ∈  𝐴 ∃ 𝑏  ∈  ℤ 𝑤  =  ( 𝑏 𝐹 𝑑 )  →  ¬  𝑑  <  𝑐 )  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) ) )  | 
						
						
							| 95 | 
							
								43 94
							 | 
							biimtrid | 
							⊢ ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  →  ( ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							com23 | 
							⊢ ( ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  ∧  𝑐  ∈  ℕ0 )  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 )  →  ( ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							expimpd | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ( ( 𝑐  ∈  ℕ0  ∧  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑐 ) )  →  ( ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) ) )  | 
						
						
							| 98 | 
							
								34 97
							 | 
							biimtrid | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ( 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) }  →  ( ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							rexlimdv | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑐  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑  ∈  { 𝑛  ∈  ℕ0  ∣  ∃ 𝑧  ∈  𝐴 ∃ 𝑎  ∈  ℤ 𝑧  =  ( 𝑎 𝐹 𝑛 ) } ¬  𝑑  <  𝑐  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) )  | 
						
						
							| 100 | 
							
								30 99
							 | 
							mpd | 
							⊢ ( ( 𝐴  ⊆  ran  𝐹  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) )  |