| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 2 |
|
ltweuz |
⊢ < We ( ℤ≥ ‘ 0 ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → < We ( ℤ≥ ‘ 0 ) ) |
| 4 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 5 |
4
|
rabex |
⊢ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∈ V |
| 6 |
5
|
a1i |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∈ V ) |
| 7 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ℕ0 |
| 8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 9 |
7 8
|
sseqtri |
⊢ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ( ℤ≥ ‘ 0 ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ( ℤ≥ ‘ 0 ) ) |
| 11 |
|
id |
⊢ ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅ ) |
| 12 |
1
|
dyadf |
⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 13 |
|
ffn |
⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ( ℤ × ℕ0 ) ) |
| 14 |
|
ovelrn |
⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑛 ∈ ℕ0 𝑧 = ( 𝑎 𝐹 𝑛 ) ) ) |
| 15 |
12 13 14
|
mp2b |
⊢ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑛 ∈ ℕ0 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 16 |
|
rexcom |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑛 ∈ ℕ0 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 17 |
15 16
|
sylbb |
⊢ ( 𝑧 ∈ ran 𝐹 → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 18 |
17
|
rgen |
⊢ ∀ 𝑧 ∈ ran 𝐹 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) |
| 19 |
|
ssralv |
⊢ ( 𝐴 ⊆ ran 𝐹 → ( ∀ 𝑧 ∈ ran 𝐹 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) ) |
| 20 |
18 19
|
mpi |
⊢ ( 𝐴 ⊆ ran 𝐹 → ∀ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 21 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 22 |
11 20 21
|
syl2anr |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 23 |
|
rexcom |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 24 |
22 23
|
sylib |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 25 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ0 ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ≠ ∅ ) |
| 27 |
|
wereu |
⊢ ( ( < We ( ℤ≥ ‘ 0 ) ∧ ( { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∈ V ∧ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ( ℤ≥ ‘ 0 ) ∧ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ≠ ∅ ) ) → ∃! 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) |
| 28 |
3 6 10 26 27
|
syl13anc |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃! 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) |
| 29 |
|
reurex |
⊢ ( ∃! 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) |
| 31 |
|
oveq2 |
⊢ ( 𝑛 = 𝑐 → ( 𝑎 𝐹 𝑛 ) = ( 𝑎 𝐹 𝑐 ) ) |
| 32 |
31
|
eqeq2d |
⊢ ( 𝑛 = 𝑐 → ( 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) ) |
| 33 |
32
|
2rexbidv |
⊢ ( 𝑛 = 𝑐 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) ) |
| 34 |
33
|
elrab |
⊢ ( 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ↔ ( 𝑐 ∈ ℕ0 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) ) |
| 35 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ 𝑤 = ( 𝑎 𝐹 𝑛 ) ) ) |
| 36 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 𝐹 𝑛 ) = ( 𝑏 𝐹 𝑛 ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑤 = ( 𝑎 𝐹 𝑛 ) ↔ 𝑤 = ( 𝑏 𝐹 𝑛 ) ) ) |
| 38 |
35 37
|
cbvrex2vw |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑛 ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑛 = 𝑑 → ( 𝑏 𝐹 𝑛 ) = ( 𝑏 𝐹 𝑑 ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( 𝑛 = 𝑑 → ( 𝑤 = ( 𝑏 𝐹 𝑛 ) ↔ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 41 |
40
|
2rexbidv |
⊢ ( 𝑛 = 𝑑 → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑛 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 42 |
38 41
|
bitrid |
⊢ ( 𝑛 = 𝑑 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 43 |
42
|
ralrab |
⊢ ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ↔ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 44 |
|
r19.23v |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 45 |
44
|
ralbii |
⊢ ( ∀ 𝑑 ∈ ℕ0 ∀ 𝑤 ∈ 𝐴 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 46 |
|
ralcom |
⊢ ( ∀ 𝑑 ∈ ℕ0 ∀ 𝑤 ∈ 𝐴 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 47 |
45 46
|
bitr3i |
⊢ ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 48 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → 𝐴 ⊆ ran 𝐹 ) |
| 49 |
48
|
sselda |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ran 𝐹 ) |
| 50 |
|
ovelrn |
⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 51 |
12 13 50
|
mp2b |
⊢ ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ) |
| 52 |
49 51
|
sylib |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ) |
| 53 |
|
rexcom |
⊢ ( ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ↔ ∃ 𝑑 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) |
| 54 |
|
r19.29 |
⊢ ( ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 55 |
54
|
expcom |
⊢ ( ∃ 𝑑 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 56 |
53 55
|
sylbi |
⊢ ( ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 57 |
52 56
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 58 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑎 ∈ ℤ ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑎 ∈ ℤ ) |
| 60 |
|
simplrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑏 ∈ ℤ ) |
| 61 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑐 ∈ ℕ0 ) |
| 62 |
|
simplrl |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑑 ∈ ℕ0 ) |
| 63 |
|
simprl |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ¬ 𝑑 < 𝑐 ) |
| 64 |
|
simprr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) |
| 65 |
1 59 60 61 62 63 64
|
dyadmaxlem |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ( 𝑎 = 𝑏 ∧ 𝑐 = 𝑑 ) ) |
| 66 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑏 ∧ 𝑐 = 𝑑 ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) |
| 68 |
67
|
exp32 |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( [,] ‘ 𝑤 ) = ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) |
| 70 |
69
|
sseq2d |
⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 71 |
|
eqeq2 |
⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( 𝑎 𝐹 𝑐 ) = 𝑤 ↔ ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) |
| 72 |
70 71
|
imbi12d |
⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 73 |
72
|
imbi2d |
⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ↔ ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) ) ) |
| 74 |
68 73
|
syl5ibrcom |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 75 |
74
|
anassrs |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ∈ ℤ ) → ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 76 |
75
|
rexlimdva |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) → ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 77 |
76
|
a2d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 78 |
77
|
impd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 79 |
78
|
rexlimdva |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 80 |
57 79
|
syld |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 81 |
80
|
ralimdva |
⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 82 |
47 81
|
biimtrid |
⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 83 |
82
|
imp |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) |
| 84 |
83
|
an32s |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) |
| 85 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( [,] ‘ 𝑧 ) = ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) |
| 86 |
85
|
sseq1d |
⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 87 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( 𝑧 = 𝑤 ↔ ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) |
| 88 |
86 87
|
imbi12d |
⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 89 |
88
|
ralbidv |
⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 90 |
84 89
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 91 |
90
|
anassrs |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 92 |
91
|
rexlimdva |
⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 93 |
92
|
reximdva |
⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 94 |
93
|
ex |
⊢ ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 95 |
43 94
|
biimtrid |
⊢ ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 96 |
95
|
com23 |
⊢ ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 97 |
96
|
expimpd |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ( ( 𝑐 ∈ ℕ0 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 98 |
34 97
|
biimtrid |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ( 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 99 |
98
|
rexlimdv |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 100 |
30 99
|
mpd |
⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |