Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
2 |
|
dyadmax.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
3 |
|
dyadmax.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
4 |
|
dyadmax.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) |
5 |
|
dyadmax.5 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
6 |
|
dyadmax.6 |
⊢ ( 𝜑 → ¬ 𝐷 < 𝐶 ) |
7 |
|
dyadmax.7 |
⊢ ( 𝜑 → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) |
8 |
1
|
dyadval |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
9 |
2 4 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
11 |
|
df-ov |
⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
12 |
10 11
|
eqtr4di |
⊢ ( 𝜑 → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
13 |
1
|
dyadss |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) → 𝐷 ≤ 𝐶 ) ) |
14 |
2 3 4 5 13
|
syl22anc |
⊢ ( 𝜑 → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) → 𝐷 ≤ 𝐶 ) ) |
15 |
7 14
|
mpd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐶 ) |
16 |
5
|
nn0red |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
17 |
4
|
nn0red |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
18 |
16 17
|
eqleltd |
⊢ ( 𝜑 → ( 𝐷 = 𝐶 ↔ ( 𝐷 ≤ 𝐶 ∧ ¬ 𝐷 < 𝐶 ) ) ) |
19 |
15 6 18
|
mpbir2and |
⊢ ( 𝜑 → 𝐷 = 𝐶 ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 𝐹 𝐷 ) = ( 𝐵 𝐹 𝐶 ) ) |
21 |
1
|
dyadval |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐵 𝐹 𝐶 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
22 |
3 4 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 𝐹 𝐶 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
25 |
|
df-ov |
⊢ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
26 |
24 25
|
eqtr4di |
⊢ ( 𝜑 → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
27 |
7 12 26
|
3sstr3d |
⊢ ( 𝜑 → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ⊆ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
28 |
2
|
zred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
29 |
|
2nn |
⊢ 2 ∈ ℕ |
30 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
31 |
29 4 30
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
32 |
28 31
|
nndivred |
⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
33 |
32
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
34 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
35 |
28 34
|
syl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ ) |
36 |
35 31
|
nndivred |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
37 |
36
|
rexrd |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
38 |
28
|
lep1d |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐴 + 1 ) ) |
39 |
31
|
nnred |
⊢ ( 𝜑 → ( 2 ↑ 𝐶 ) ∈ ℝ ) |
40 |
31
|
nngt0d |
⊢ ( 𝜑 → 0 < ( 2 ↑ 𝐶 ) ) |
41 |
|
lediv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
42 |
28 35 39 40 41
|
syl112anc |
⊢ ( 𝜑 → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
43 |
38 42
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
44 |
|
ubicc2 |
⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
45 |
33 37 43 44
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
46 |
27 45
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
47 |
3
|
zred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
48 |
47 31
|
nndivred |
⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
49 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
50 |
47 49
|
syl |
⊢ ( 𝜑 → ( 𝐵 + 1 ) ∈ ℝ ) |
51 |
50 31
|
nndivred |
⊢ ( 𝜑 → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
52 |
|
elicc2 |
⊢ ( ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
53 |
48 51 52
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
54 |
46 53
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
55 |
54
|
simp3d |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
56 |
|
lediv1 |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) → ( ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ↔ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
57 |
35 50 39 40 56
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ↔ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
58 |
55 57
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ) |
59 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
60 |
28 47 59
|
leadd1d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ) ) |
61 |
58 60
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
62 |
|
lbicc2 |
⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
63 |
33 37 43 62
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
64 |
27 63
|
sseldd |
⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
65 |
|
elicc2 |
⊢ ( ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
66 |
48 51 65
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
67 |
64 66
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
68 |
67
|
simp2d |
⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) |
69 |
|
lediv1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) ) |
70 |
47 28 39 40 69
|
syl112anc |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) ) |
71 |
68 70
|
mpbird |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
72 |
28 47
|
letri3d |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
73 |
61 71 72
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
74 |
19
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
75 |
73 74
|
jca |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ) |