| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℕ0  ↦  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉 ) | 
						
							| 2 |  | dyadmbl.2 | ⊢ 𝐺  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) } | 
						
							| 3 |  | dyadmbl.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ran  𝐹 ) | 
						
							| 4 | 1 2 3 | dyadmbllem | ⊢ ( 𝜑  →  ∪  ( [,]  “  𝐴 )  =  ∪  ( [,]  “  𝐺 ) ) | 
						
							| 5 |  | isfinite | ⊢ ( 𝐺  ∈  Fin  ↔  𝐺  ≺  ω ) | 
						
							| 6 |  | iccf | ⊢ [,] : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 7 |  | ffun | ⊢ ( [,] : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  →  Fun  [,] ) | 
						
							| 8 |  | funiunfv | ⊢ ( Fun  [,]  →  ∪  𝑛  ∈  𝐺 ( [,] ‘ 𝑛 )  =  ∪  ( [,]  “  𝐺 ) ) | 
						
							| 9 | 6 7 8 | mp2b | ⊢ ∪  𝑛  ∈  𝐺 ( [,] ‘ 𝑛 )  =  ∪  ( [,]  “  𝐺 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐺  ∈  Fin )  →  𝐺  ∈  Fin ) | 
						
							| 11 | 2 | ssrab3 | ⊢ 𝐺  ⊆  𝐴 | 
						
							| 12 | 11 3 | sstrid | ⊢ ( 𝜑  →  𝐺  ⊆  ran  𝐹 ) | 
						
							| 13 | 1 | dyadf | ⊢ 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 14 |  | frn | ⊢ ( 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ran  𝐹  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ran  𝐹  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 16 |  | inss2 | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 17 | 15 16 | sstri | ⊢ ran  𝐹  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 18 | 12 17 | sstrdi | ⊢ ( 𝜑  →  𝐺  ⊆  ( ℝ  ×  ℝ ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐺  ∈  Fin )  →  𝐺  ⊆  ( ℝ  ×  ℝ ) ) | 
						
							| 20 | 19 | sselda | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  𝑛  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 21 |  | 1st2nd2 | ⊢ ( 𝑛  ∈  ( ℝ  ×  ℝ )  →  𝑛  =  〈 ( 1st  ‘ 𝑛 ) ,  ( 2nd  ‘ 𝑛 ) 〉 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  𝑛  =  〈 ( 1st  ‘ 𝑛 ) ,  ( 2nd  ‘ 𝑛 ) 〉 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  ( [,] ‘ 𝑛 )  =  ( [,] ‘ 〈 ( 1st  ‘ 𝑛 ) ,  ( 2nd  ‘ 𝑛 ) 〉 ) ) | 
						
							| 24 |  | df-ov | ⊢ ( ( 1st  ‘ 𝑛 ) [,] ( 2nd  ‘ 𝑛 ) )  =  ( [,] ‘ 〈 ( 1st  ‘ 𝑛 ) ,  ( 2nd  ‘ 𝑛 ) 〉 ) | 
						
							| 25 | 23 24 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  ( [,] ‘ 𝑛 )  =  ( ( 1st  ‘ 𝑛 ) [,] ( 2nd  ‘ 𝑛 ) ) ) | 
						
							| 26 |  | xp1st | ⊢ ( 𝑛  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 27 | 20 26 | syl | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  ( 1st  ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 28 |  | xp2nd | ⊢ ( 𝑛  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 29 | 20 28 | syl | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  ( 2nd  ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 30 |  | iccmbl | ⊢ ( ( ( 1st  ‘ 𝑛 )  ∈  ℝ  ∧  ( 2nd  ‘ 𝑛 )  ∈  ℝ )  →  ( ( 1st  ‘ 𝑛 ) [,] ( 2nd  ‘ 𝑛 ) )  ∈  dom  vol ) | 
						
							| 31 | 27 29 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  ( ( 1st  ‘ 𝑛 ) [,] ( 2nd  ‘ 𝑛 ) )  ∈  dom  vol ) | 
						
							| 32 | 25 31 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝐺  ∈  Fin )  ∧  𝑛  ∈  𝐺 )  →  ( [,] ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐺  ∈  Fin )  →  ∀ 𝑛  ∈  𝐺 ( [,] ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 34 |  | finiunmbl | ⊢ ( ( 𝐺  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐺 ( [,] ‘ 𝑛 )  ∈  dom  vol )  →  ∪  𝑛  ∈  𝐺 ( [,] ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 35 | 10 33 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐺  ∈  Fin )  →  ∪  𝑛  ∈  𝐺 ( [,] ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 36 | 9 35 | eqeltrrid | ⊢ ( ( 𝜑  ∧  𝐺  ∈  Fin )  →  ∪  ( [,]  “  𝐺 )  ∈  dom  vol ) | 
						
							| 37 | 5 36 | sylan2br | ⊢ ( ( 𝜑  ∧  𝐺  ≺  ω )  →  ∪  ( [,]  “  𝐺 )  ∈  dom  vol ) | 
						
							| 38 |  | rnco2 | ⊢ ran  ( [,]  ∘  𝑓 )  =  ( [,]  “  ran  𝑓 ) | 
						
							| 39 |  | f1ofo | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐺  →  𝑓 : ℕ –onto→ 𝐺 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  𝑓 : ℕ –onto→ 𝐺 ) | 
						
							| 41 |  | forn | ⊢ ( 𝑓 : ℕ –onto→ 𝐺  →  ran  𝑓  =  𝐺 ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  ran  𝑓  =  𝐺 ) | 
						
							| 43 | 42 | imaeq2d | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  ( [,]  “  ran  𝑓 )  =  ( [,]  “  𝐺 ) ) | 
						
							| 44 | 38 43 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  ran  ( [,]  ∘  𝑓 )  =  ( [,]  “  𝐺 ) ) | 
						
							| 45 | 44 | unieqd | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  ∪  ran  ( [,]  ∘  𝑓 )  =  ∪  ( [,]  “  𝐺 ) ) | 
						
							| 46 |  | f1of | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐺  →  𝑓 : ℕ ⟶ 𝐺 ) | 
						
							| 47 | 12 15 | sstrdi | ⊢ ( 𝜑  →  𝐺  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 48 |  | fss | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺  ∧  𝐺  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  →  𝑓 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 49 | 46 47 48 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  𝑓 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 50 |  | fss | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺  ∧  𝐺  ⊆  ran  𝐹 )  →  𝑓 : ℕ ⟶ ran  𝐹 ) | 
						
							| 51 | 46 12 50 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  𝑓 : ℕ ⟶ ran  𝐹 ) | 
						
							| 52 |  | simpl | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ )  →  𝑎  ∈  ℕ ) | 
						
							| 53 |  | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ran  𝐹  ∧  𝑎  ∈  ℕ )  →  ( 𝑓 ‘ 𝑎 )  ∈  ran  𝐹 ) | 
						
							| 54 | 51 52 53 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( 𝑓 ‘ 𝑎 )  ∈  ran  𝐹 ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ )  →  𝑏  ∈  ℕ ) | 
						
							| 56 |  | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ran  𝐹  ∧  𝑏  ∈  ℕ )  →  ( 𝑓 ‘ 𝑏 )  ∈  ran  𝐹 ) | 
						
							| 57 | 51 55 56 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( 𝑓 ‘ 𝑏 )  ∈  ran  𝐹 ) | 
						
							| 58 | 1 | dyaddisj | ⊢ ( ( ( 𝑓 ‘ 𝑎 )  ∈  ran  𝐹  ∧  ( 𝑓 ‘ 𝑏 )  ∈  ran  𝐹 )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ∨  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) | 
						
							| 59 | 54 57 58 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ∨  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑏 )  →  ( [,] ‘ 𝑤 )  =  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 61 | 60 | sseq2d | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑏 )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 )  ↔  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ) ) | 
						
							| 62 |  | eqeq2 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑏 )  →  ( ( 𝑓 ‘ 𝑎 )  =  𝑤  ↔  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 63 | 61 62 | imbi12d | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑏 )  →  ( ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑎 )  =  𝑤 )  ↔  ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 ) ) ) ) | 
						
							| 64 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  𝑓 : ℕ ⟶ 𝐺 ) | 
						
							| 65 |  | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺  ∧  𝑎  ∈  ℕ )  →  ( 𝑓 ‘ 𝑎 )  ∈  𝐺 ) | 
						
							| 66 | 64 52 65 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( 𝑓 ‘ 𝑎 )  ∈  𝐺 ) | 
						
							| 67 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑎 )  →  ( [,] ‘ 𝑧 )  =  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ) | 
						
							| 68 | 67 | sseq1d | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑎 )  →  ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  ↔  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 ) ) ) | 
						
							| 69 |  | eqeq1 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑎 )  →  ( 𝑧  =  𝑤  ↔  ( 𝑓 ‘ 𝑎 )  =  𝑤 ) ) | 
						
							| 70 | 68 69 | imbi12d | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑎 )  →  ( ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑎 )  =  𝑤 ) ) ) | 
						
							| 71 | 70 | ralbidv | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑎 )  →  ( ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑎 )  =  𝑤 ) ) ) | 
						
							| 72 | 71 2 | elrab2 | ⊢ ( ( 𝑓 ‘ 𝑎 )  ∈  𝐺  ↔  ( ( 𝑓 ‘ 𝑎 )  ∈  𝐴  ∧  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑎 )  =  𝑤 ) ) ) | 
						
							| 73 | 72 | simprbi | ⊢ ( ( 𝑓 ‘ 𝑎 )  ∈  𝐺  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑎 )  =  𝑤 ) ) | 
						
							| 74 | 66 73 | syl | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑎 )  =  𝑤 ) ) | 
						
							| 75 |  | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐺  ∧  𝑏  ∈  ℕ )  →  ( 𝑓 ‘ 𝑏 )  ∈  𝐺 ) | 
						
							| 76 | 64 55 75 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( 𝑓 ‘ 𝑏 )  ∈  𝐺 ) | 
						
							| 77 | 11 76 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( 𝑓 ‘ 𝑏 )  ∈  𝐴 ) | 
						
							| 78 | 63 74 77 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 79 |  | f1of1 | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐺  →  𝑓 : ℕ –1-1→ 𝐺 ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  𝑓 : ℕ –1-1→ 𝐺 ) | 
						
							| 81 |  | f1fveq | ⊢ ( ( 𝑓 : ℕ –1-1→ 𝐺  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 )  ↔  𝑎  =  𝑏 ) ) | 
						
							| 82 | 80 81 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 )  ↔  𝑎  =  𝑏 ) ) | 
						
							| 83 |  | orc | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) | 
						
							| 84 | 82 83 | biimtrdi | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 )  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) ) | 
						
							| 85 | 78 84 | syld | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑎 )  →  ( [,] ‘ 𝑤 )  =  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ) | 
						
							| 87 | 86 | sseq2d | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑎 )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 )  ↔  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) ) ) ) | 
						
							| 88 |  | eqeq2 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑎 )  →  ( ( 𝑓 ‘ 𝑏 )  =  𝑤  ↔  ( 𝑓 ‘ 𝑏 )  =  ( 𝑓 ‘ 𝑎 ) ) ) | 
						
							| 89 |  | eqcom | ⊢ ( ( 𝑓 ‘ 𝑏 )  =  ( 𝑓 ‘ 𝑎 )  ↔  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 ) ) | 
						
							| 90 | 88 89 | bitrdi | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑎 )  →  ( ( 𝑓 ‘ 𝑏 )  =  𝑤  ↔  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 91 | 87 90 | imbi12d | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑎 )  →  ( ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑏 )  =  𝑤 )  ↔  ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 ) ) ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑏 )  →  ( [,] ‘ 𝑧 )  =  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 93 | 92 | sseq1d | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑏 )  →  ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  ↔  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 ) ) ) | 
						
							| 94 |  | eqeq1 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑏 )  →  ( 𝑧  =  𝑤  ↔  ( 𝑓 ‘ 𝑏 )  =  𝑤 ) ) | 
						
							| 95 | 93 94 | imbi12d | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑏 )  →  ( ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑏 )  =  𝑤 ) ) ) | 
						
							| 96 | 95 | ralbidv | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑏 )  →  ( ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑏 )  =  𝑤 ) ) ) | 
						
							| 97 | 96 2 | elrab2 | ⊢ ( ( 𝑓 ‘ 𝑏 )  ∈  𝐺  ↔  ( ( 𝑓 ‘ 𝑏 )  ∈  𝐴  ∧  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑏 )  =  𝑤 ) ) ) | 
						
							| 98 | 97 | simprbi | ⊢ ( ( 𝑓 ‘ 𝑏 )  ∈  𝐺  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑏 )  =  𝑤 ) ) | 
						
							| 99 | 76 98 | syl | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ 𝑤 )  →  ( 𝑓 ‘ 𝑏 )  =  𝑤 ) ) | 
						
							| 100 | 11 66 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( 𝑓 ‘ 𝑎 )  ∈  𝐴 ) | 
						
							| 101 | 91 99 100 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 102 | 101 84 | syld | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) ) | 
						
							| 103 |  | olc | ⊢ ( ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) | 
						
							| 104 | 103 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) ) | 
						
							| 105 | 85 102 104 | 3jaod | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( ( ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ∨  ( [,] ‘ ( 𝑓 ‘ 𝑏 ) )  ⊆  ( [,] ‘ ( 𝑓 ‘ 𝑎 ) )  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ )  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) ) | 
						
							| 106 | 59 105 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  ∧  ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ ) )  →  ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) | 
						
							| 107 | 106 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  ∀ 𝑎  ∈  ℕ ∀ 𝑏  ∈  ℕ ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) | 
						
							| 108 |  | 2fveq3 | ⊢ ( 𝑎  =  𝑏  →  ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  =  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) ) | 
						
							| 109 | 108 | disjor | ⊢ ( Disj  𝑎  ∈  ℕ ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ↔  ∀ 𝑎  ∈  ℕ ∀ 𝑏  ∈  ℕ ( 𝑎  =  𝑏  ∨  ( ( (,) ‘ ( 𝑓 ‘ 𝑎 ) )  ∩  ( (,) ‘ ( 𝑓 ‘ 𝑏 ) ) )  =  ∅ ) ) | 
						
							| 110 | 107 109 | sylibr | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  Disj  𝑎  ∈  ℕ ( (,) ‘ ( 𝑓 ‘ 𝑎 ) ) ) | 
						
							| 111 |  | eqid | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) )  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) | 
						
							| 112 | 49 110 111 | uniiccmbl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  ∪  ran  ( [,]  ∘  𝑓 )  ∈  dom  vol ) | 
						
							| 113 | 45 112 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –1-1-onto→ 𝐺 )  →  ∪  ( [,]  “  𝐺 )  ∈  dom  vol ) | 
						
							| 114 | 113 | ex | ⊢ ( 𝜑  →  ( 𝑓 : ℕ –1-1-onto→ 𝐺  →  ∪  ( [,]  “  𝐺 )  ∈  dom  vol ) ) | 
						
							| 115 | 114 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐺  →  ∪  ( [,]  “  𝐺 )  ∈  dom  vol ) ) | 
						
							| 116 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 117 |  | ensym | ⊢ ( 𝐺  ≈  ω  →  ω  ≈  𝐺 ) | 
						
							| 118 |  | entr | ⊢ ( ( ℕ  ≈  ω  ∧  ω  ≈  𝐺 )  →  ℕ  ≈  𝐺 ) | 
						
							| 119 | 116 117 118 | sylancr | ⊢ ( 𝐺  ≈  ω  →  ℕ  ≈  𝐺 ) | 
						
							| 120 |  | bren | ⊢ ( ℕ  ≈  𝐺  ↔  ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐺 ) | 
						
							| 121 | 119 120 | sylib | ⊢ ( 𝐺  ≈  ω  →  ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐺 ) | 
						
							| 122 | 115 121 | impel | ⊢ ( ( 𝜑  ∧  𝐺  ≈  ω )  →  ∪  ( [,]  “  𝐺 )  ∈  dom  vol ) | 
						
							| 123 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 124 | 123 123 | xpex | ⊢ ( ℝ  ×  ℝ )  ∈  V | 
						
							| 125 | 124 | inex2 | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∈  V | 
						
							| 126 | 125 15 | ssexi | ⊢ ran  𝐹  ∈  V | 
						
							| 127 |  | ssdomg | ⊢ ( ran  𝐹  ∈  V  →  ( 𝐺  ⊆  ran  𝐹  →  𝐺  ≼  ran  𝐹 ) ) | 
						
							| 128 | 126 12 127 | mpsyl | ⊢ ( 𝜑  →  𝐺  ≼  ran  𝐹 ) | 
						
							| 129 |  | omelon | ⊢ ω  ∈  On | 
						
							| 130 |  | znnen | ⊢ ℤ  ≈  ℕ | 
						
							| 131 | 130 116 | entri | ⊢ ℤ  ≈  ω | 
						
							| 132 |  | nn0ennn | ⊢ ℕ0  ≈  ℕ | 
						
							| 133 | 132 116 | entri | ⊢ ℕ0  ≈  ω | 
						
							| 134 |  | xpen | ⊢ ( ( ℤ  ≈  ω  ∧  ℕ0  ≈  ω )  →  ( ℤ  ×  ℕ0 )  ≈  ( ω  ×  ω ) ) | 
						
							| 135 | 131 133 134 | mp2an | ⊢ ( ℤ  ×  ℕ0 )  ≈  ( ω  ×  ω ) | 
						
							| 136 |  | xpomen | ⊢ ( ω  ×  ω )  ≈  ω | 
						
							| 137 | 135 136 | entri | ⊢ ( ℤ  ×  ℕ0 )  ≈  ω | 
						
							| 138 | 137 | ensymi | ⊢ ω  ≈  ( ℤ  ×  ℕ0 ) | 
						
							| 139 |  | isnumi | ⊢ ( ( ω  ∈  On  ∧  ω  ≈  ( ℤ  ×  ℕ0 ) )  →  ( ℤ  ×  ℕ0 )  ∈  dom  card ) | 
						
							| 140 | 129 138 139 | mp2an | ⊢ ( ℤ  ×  ℕ0 )  ∈  dom  card | 
						
							| 141 |  | ffn | ⊢ ( 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝐹  Fn  ( ℤ  ×  ℕ0 ) ) | 
						
							| 142 | 13 141 | ax-mp | ⊢ 𝐹  Fn  ( ℤ  ×  ℕ0 ) | 
						
							| 143 |  | dffn4 | ⊢ ( 𝐹  Fn  ( ℤ  ×  ℕ0 )  ↔  𝐹 : ( ℤ  ×  ℕ0 ) –onto→ ran  𝐹 ) | 
						
							| 144 | 142 143 | mpbi | ⊢ 𝐹 : ( ℤ  ×  ℕ0 ) –onto→ ran  𝐹 | 
						
							| 145 |  | fodomnum | ⊢ ( ( ℤ  ×  ℕ0 )  ∈  dom  card  →  ( 𝐹 : ( ℤ  ×  ℕ0 ) –onto→ ran  𝐹  →  ran  𝐹  ≼  ( ℤ  ×  ℕ0 ) ) ) | 
						
							| 146 | 140 144 145 | mp2 | ⊢ ran  𝐹  ≼  ( ℤ  ×  ℕ0 ) | 
						
							| 147 |  | domentr | ⊢ ( ( ran  𝐹  ≼  ( ℤ  ×  ℕ0 )  ∧  ( ℤ  ×  ℕ0 )  ≈  ω )  →  ran  𝐹  ≼  ω ) | 
						
							| 148 | 146 137 147 | mp2an | ⊢ ran  𝐹  ≼  ω | 
						
							| 149 |  | domtr | ⊢ ( ( 𝐺  ≼  ran  𝐹  ∧  ran  𝐹  ≼  ω )  →  𝐺  ≼  ω ) | 
						
							| 150 | 128 148 149 | sylancl | ⊢ ( 𝜑  →  𝐺  ≼  ω ) | 
						
							| 151 |  | brdom2 | ⊢ ( 𝐺  ≼  ω  ↔  ( 𝐺  ≺  ω  ∨  𝐺  ≈  ω ) ) | 
						
							| 152 | 150 151 | sylib | ⊢ ( 𝜑  →  ( 𝐺  ≺  ω  ∨  𝐺  ≈  ω ) ) | 
						
							| 153 | 37 122 152 | mpjaodan | ⊢ ( 𝜑  →  ∪  ( [,]  “  𝐺 )  ∈  dom  vol ) | 
						
							| 154 | 4 153 | eqeltrd | ⊢ ( 𝜑  →  ∪  ( [,]  “  𝐴 )  ∈  dom  vol ) |