Metamath Proof Explorer


Theorem dyadmbllem

Description: Lemma for dyadmbl . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses dyadmbl.1 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ )
dyadmbl.2 𝐺 = { 𝑧𝐴 ∣ ∀ 𝑤𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) }
dyadmbl.3 ( 𝜑𝐴 ⊆ ran 𝐹 )
Assertion dyadmbllem ( 𝜑 ( [,] “ 𝐴 ) = ( [,] “ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 dyadmbl.1 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ )
2 dyadmbl.2 𝐺 = { 𝑧𝐴 ∣ ∀ 𝑤𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) }
3 dyadmbl.3 ( 𝜑𝐴 ⊆ ran 𝐹 )
4 eluni2 ( 𝑎 ( [,] “ 𝐴 ) ↔ ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎𝑖 )
5 iccf [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
6 ffn ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) )
7 5 6 ax-mp [,] Fn ( ℝ* × ℝ* )
8 1 dyadf 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) )
9 frn ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) )
10 8 9 ax-mp ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) )
11 inss2 ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ )
12 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
13 11 12 sstri ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* )
14 10 13 sstri ran 𝐹 ⊆ ( ℝ* × ℝ* )
15 3 14 sstrdi ( 𝜑𝐴 ⊆ ( ℝ* × ℝ* ) )
16 eleq2 ( 𝑖 = ( [,] ‘ 𝑡 ) → ( 𝑎𝑖𝑎 ∈ ( [,] ‘ 𝑡 ) ) )
17 16 rexima ( ( [,] Fn ( ℝ* × ℝ* ) ∧ 𝐴 ⊆ ( ℝ* × ℝ* ) ) → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎𝑖 ↔ ∃ 𝑡𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) ) )
18 7 15 17 sylancr ( 𝜑 → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎𝑖 ↔ ∃ 𝑡𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) ) )
19 ssrab2 { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ 𝐴
20 3 adantr ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝐴 ⊆ ran 𝐹 )
21 19 20 sstrid ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ ran 𝐹 )
22 simprl ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝑡𝐴 )
23 ssid ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 )
24 fveq2 ( 𝑎 = 𝑡 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑡 ) )
25 24 sseq2d ( 𝑎 = 𝑡 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) ) )
26 25 rspcev ( ( 𝑡𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) ) → ∃ 𝑎𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) )
27 22 23 26 sylancl ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ∃ 𝑎𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) )
28 rabn0 ( { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ↔ ∃ 𝑎𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) )
29 27 28 sylibr ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ )
30 1 dyadmax ( ( { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ ran 𝐹 ∧ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ) → ∃ 𝑚 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) )
31 21 29 30 syl2anc ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ∃ 𝑚 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) )
32 fveq2 ( 𝑎 = 𝑚 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑚 ) )
33 32 sseq2d ( 𝑎 = 𝑚 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) )
34 33 elrab ( 𝑚 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ↔ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) )
35 simprlr ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) )
36 simplrr ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ( [,] ‘ 𝑡 ) )
37 35 36 sseldd ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ( [,] ‘ 𝑚 ) )
38 simprll ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑚𝐴 )
39 fveq2 ( 𝑎 = 𝑤 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑤 ) )
40 39 sseq2d ( 𝑎 = 𝑤 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) )
41 40 elrab ( 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ↔ ( 𝑤𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) )
42 41 imbi1i ( ( 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( ( 𝑤𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
43 impexp ( ( ( 𝑤𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( 𝑤𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) )
44 42 43 bitri ( ( 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( 𝑤𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) )
45 impexp ( ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) → 𝑚 = 𝑤 ) ↔ ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
46 sstr2 ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) )
47 46 ad2antll ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) )
48 47 ancrd ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) ) )
49 48 imim1d ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) → 𝑚 = 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
50 45 49 syl5bir ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
51 50 imim2d ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( 𝑤𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( 𝑤𝐴 → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) )
52 44 51 syl5bi ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) → ( 𝑤𝐴 → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) )
53 52 ralimdv2 ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → ∀ 𝑤𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
54 53 impr ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ∀ 𝑤𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) )
55 fveq2 ( 𝑧 = 𝑚 → ( [,] ‘ 𝑧 ) = ( [,] ‘ 𝑚 ) )
56 55 sseq1d ( 𝑧 = 𝑚 → ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) )
57 equequ1 ( 𝑧 = 𝑚 → ( 𝑧 = 𝑤𝑚 = 𝑤 ) )
58 56 57 imbi12d ( 𝑧 = 𝑚 → ( ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
59 58 ralbidv ( 𝑧 = 𝑚 → ( ∀ 𝑤𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑤𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
60 59 2 elrab2 ( 𝑚𝐺 ↔ ( 𝑚𝐴 ∧ ∀ 𝑤𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) )
61 38 54 60 sylanbrc ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑚𝐺 )
62 ffun ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] )
63 5 62 ax-mp Fun [,]
64 2 ssrab3 𝐺𝐴
65 64 15 sstrid ( 𝜑𝐺 ⊆ ( ℝ* × ℝ* ) )
66 5 fdmi dom [,] = ( ℝ* × ℝ* )
67 65 66 sseqtrrdi ( 𝜑𝐺 ⊆ dom [,] )
68 67 ad2antrr ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝐺 ⊆ dom [,] )
69 funfvima2 ( ( Fun [,] ∧ 𝐺 ⊆ dom [,] ) → ( 𝑚𝐺 → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) )
70 63 68 69 sylancr ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( 𝑚𝐺 → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) )
71 61 70 mpd ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) )
72 elunii ( ( 𝑎 ∈ ( [,] ‘ 𝑚 ) ∧ ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) → 𝑎 ( [,] “ 𝐺 ) )
73 37 71 72 syl2anc ( ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ( [,] “ 𝐺 ) )
74 73 exp32 ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( ( 𝑚𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) → ( ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ( [,] “ 𝐺 ) ) ) )
75 34 74 syl5bi ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( 𝑚 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ( [,] “ 𝐺 ) ) ) )
76 75 rexlimdv ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( ∃ 𝑚 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ( [,] “ 𝐺 ) ) )
77 31 76 mpd ( ( 𝜑 ∧ ( 𝑡𝐴𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝑎 ( [,] “ 𝐺 ) )
78 77 rexlimdvaa ( 𝜑 → ( ∃ 𝑡𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) → 𝑎 ( [,] “ 𝐺 ) ) )
79 18 78 sylbid ( 𝜑 → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎𝑖𝑎 ( [,] “ 𝐺 ) ) )
80 4 79 syl5bi ( 𝜑 → ( 𝑎 ( [,] “ 𝐴 ) → 𝑎 ( [,] “ 𝐺 ) ) )
81 80 ssrdv ( 𝜑 ( [,] “ 𝐴 ) ⊆ ( [,] “ 𝐺 ) )
82 imass2 ( 𝐺𝐴 → ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) )
83 64 82 ax-mp ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 )
84 uniss ( ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) → ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) )
85 83 84 mp1i ( 𝜑 ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) )
86 81 85 eqssd ( 𝜑 ( [,] “ 𝐴 ) = ( [,] “ 𝐺 ) )