Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
2 |
|
dyadmbl.2 |
⊢ 𝐺 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) } |
3 |
|
dyadmbl.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ran 𝐹 ) |
4 |
|
eluni2 |
⊢ ( 𝑎 ∈ ∪ ( [,] “ 𝐴 ) ↔ ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 ) |
5 |
|
iccf |
⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
6 |
|
ffn |
⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) ) |
7 |
5 6
|
ax-mp |
⊢ [,] Fn ( ℝ* × ℝ* ) |
8 |
1
|
dyadf |
⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
9 |
|
frn |
⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) |
11 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
12 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
13 |
11 12
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
14 |
10 13
|
sstri |
⊢ ran 𝐹 ⊆ ( ℝ* × ℝ* ) |
15 |
3 14
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ* × ℝ* ) ) |
16 |
|
eleq2 |
⊢ ( 𝑖 = ( [,] ‘ 𝑡 ) → ( 𝑎 ∈ 𝑖 ↔ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) |
17 |
16
|
rexima |
⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ 𝐴 ⊆ ( ℝ* × ℝ* ) ) → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 ↔ ∃ 𝑡 ∈ 𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) |
18 |
7 15 17
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 ↔ ∃ 𝑡 ∈ 𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) |
19 |
|
ssrab2 |
⊢ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ 𝐴 |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝐴 ⊆ ran 𝐹 ) |
21 |
19 20
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ ran 𝐹 ) |
22 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝑡 ∈ 𝐴 ) |
23 |
|
ssid |
⊢ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) |
24 |
|
fveq2 |
⊢ ( 𝑎 = 𝑡 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑡 ) ) |
25 |
24
|
sseq2d |
⊢ ( 𝑎 = 𝑡 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) ) ) |
26 |
25
|
rspcev |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑡 ) ) → ∃ 𝑎 ∈ 𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ) |
27 |
22 23 26
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ∃ 𝑎 ∈ 𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ) |
28 |
|
rabn0 |
⊢ ( { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ↔ ∃ 𝑎 ∈ 𝐴 ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ) |
30 |
1
|
dyadmax |
⊢ ( ( { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ⊆ ran 𝐹 ∧ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ≠ ∅ ) → ∃ 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) |
31 |
21 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ∃ 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑎 = 𝑚 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑚 ) ) |
33 |
32
|
sseq2d |
⊢ ( 𝑎 = 𝑚 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) |
34 |
33
|
elrab |
⊢ ( 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ↔ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) |
35 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) |
36 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ( [,] ‘ 𝑡 ) ) |
37 |
35 36
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ( [,] ‘ 𝑚 ) ) |
38 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑚 ∈ 𝐴 ) |
39 |
|
fveq2 |
⊢ ( 𝑎 = 𝑤 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑤 ) ) |
40 |
39
|
sseq2d |
⊢ ( 𝑎 = 𝑤 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) ↔ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
41 |
40
|
elrab |
⊢ ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ↔ ( 𝑤 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
42 |
41
|
imbi1i |
⊢ ( ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
43 |
|
impexp |
⊢ ( ( ( 𝑤 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) |
44 |
42 43
|
bitri |
⊢ ( ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) |
45 |
|
impexp |
⊢ ( ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) → 𝑚 = 𝑤 ) ↔ ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
46 |
|
sstr2 |
⊢ ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
47 |
46
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
48 |
47
|
ancrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) ) ) |
49 |
48
|
imim1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) ∧ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) → 𝑚 = 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
50 |
45 49
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
51 |
50
|
imim2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑤 ) → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) |
52 |
44 51
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ( 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) → ( 𝑤 ∈ 𝐴 → ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) ) |
53 |
52
|
ralimdv2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ) → ( ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
54 |
53
|
impr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) |
55 |
|
fveq2 |
⊢ ( 𝑧 = 𝑚 → ( [,] ‘ 𝑧 ) = ( [,] ‘ 𝑚 ) ) |
56 |
55
|
sseq1d |
⊢ ( 𝑧 = 𝑚 → ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
57 |
|
equequ1 |
⊢ ( 𝑧 = 𝑚 → ( 𝑧 = 𝑤 ↔ 𝑚 = 𝑤 ) ) |
58 |
56 57
|
imbi12d |
⊢ ( 𝑧 = 𝑚 → ( ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
59 |
58
|
ralbidv |
⊢ ( 𝑧 = 𝑚 → ( ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
60 |
59 2
|
elrab2 |
⊢ ( 𝑚 ∈ 𝐺 ↔ ( 𝑚 ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) |
61 |
38 54 60
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑚 ∈ 𝐺 ) |
62 |
|
ffun |
⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] ) |
63 |
5 62
|
ax-mp |
⊢ Fun [,] |
64 |
2
|
ssrab3 |
⊢ 𝐺 ⊆ 𝐴 |
65 |
64 15
|
sstrid |
⊢ ( 𝜑 → 𝐺 ⊆ ( ℝ* × ℝ* ) ) |
66 |
5
|
fdmi |
⊢ dom [,] = ( ℝ* × ℝ* ) |
67 |
65 66
|
sseqtrrdi |
⊢ ( 𝜑 → 𝐺 ⊆ dom [,] ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝐺 ⊆ dom [,] ) |
69 |
|
funfvima2 |
⊢ ( ( Fun [,] ∧ 𝐺 ⊆ dom [,] ) → ( 𝑚 ∈ 𝐺 → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) ) |
70 |
63 68 69
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( 𝑚 ∈ 𝐺 → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) ) |
71 |
61 70
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) |
72 |
|
elunii |
⊢ ( ( 𝑎 ∈ ( [,] ‘ 𝑚 ) ∧ ( [,] ‘ 𝑚 ) ∈ ( [,] “ 𝐺 ) ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) |
73 |
37 71 72
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) ∧ ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) ∧ ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) ) ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) |
74 |
73
|
exp32 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( ( 𝑚 ∈ 𝐴 ∧ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑚 ) ) → ( ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) ) |
75 |
34 74
|
syl5bi |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } → ( ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) ) |
76 |
75
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → ( ∃ 𝑚 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ∀ 𝑤 ∈ { 𝑎 ∈ 𝐴 ∣ ( [,] ‘ 𝑡 ) ⊆ ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑚 = 𝑤 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
77 |
31 76
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐴 ∧ 𝑎 ∈ ( [,] ‘ 𝑡 ) ) ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) |
78 |
77
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐴 𝑎 ∈ ( [,] ‘ 𝑡 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
79 |
18 78
|
sylbid |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( [,] “ 𝐴 ) 𝑎 ∈ 𝑖 → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
80 |
4 79
|
syl5bi |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ ( [,] “ 𝐴 ) → 𝑎 ∈ ∪ ( [,] “ 𝐺 ) ) ) |
81 |
80
|
ssrdv |
⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) ⊆ ∪ ( [,] “ 𝐺 ) ) |
82 |
|
imass2 |
⊢ ( 𝐺 ⊆ 𝐴 → ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) ) |
83 |
64 82
|
ax-mp |
⊢ ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) |
84 |
|
uniss |
⊢ ( ( [,] “ 𝐺 ) ⊆ ( [,] “ 𝐴 ) → ∪ ( [,] “ 𝐺 ) ⊆ ∪ ( [,] “ 𝐴 ) ) |
85 |
83 84
|
mp1i |
⊢ ( 𝜑 → ∪ ( [,] “ 𝐺 ) ⊆ ∪ ( [,] “ 𝐴 ) ) |
86 |
81 85
|
eqssd |
⊢ ( 𝜑 → ∪ ( [,] “ 𝐴 ) = ∪ ( [,] “ 𝐺 ) ) |