| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℕ0  ↦  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉 ) | 
						
							| 2 |  | dyadmbl.2 | ⊢ 𝐺  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 ) } | 
						
							| 3 |  | dyadmbl.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ran  𝐹 ) | 
						
							| 4 |  | eluni2 | ⊢ ( 𝑎  ∈  ∪  ( [,]  “  𝐴 )  ↔  ∃ 𝑖  ∈  ( [,]  “  𝐴 ) 𝑎  ∈  𝑖 ) | 
						
							| 5 |  | iccf | ⊢ [,] : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 6 |  | ffn | ⊢ ( [,] : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  →  [,]  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ [,]  Fn  ( ℝ*  ×  ℝ* ) | 
						
							| 8 | 1 | dyadf | ⊢ 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 9 |  | frn | ⊢ ( 𝐹 : ( ℤ  ×  ℕ0 ) ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ran  𝐹  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ran  𝐹  ⊆  (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 11 |  | inss2 | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 12 |  | rexpssxrxp | ⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 13 | 11 12 | sstri | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 14 | 10 13 | sstri | ⊢ ran  𝐹  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 15 | 3 14 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 16 |  | eleq2 | ⊢ ( 𝑖  =  ( [,] ‘ 𝑡 )  →  ( 𝑎  ∈  𝑖  ↔  𝑎  ∈  ( [,] ‘ 𝑡 ) ) ) | 
						
							| 17 | 16 | rexima | ⊢ ( ( [,]  Fn  ( ℝ*  ×  ℝ* )  ∧  𝐴  ⊆  ( ℝ*  ×  ℝ* ) )  →  ( ∃ 𝑖  ∈  ( [,]  “  𝐴 ) 𝑎  ∈  𝑖  ↔  ∃ 𝑡  ∈  𝐴 𝑎  ∈  ( [,] ‘ 𝑡 ) ) ) | 
						
							| 18 | 7 15 17 | sylancr | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( [,]  “  𝐴 ) 𝑎  ∈  𝑖  ↔  ∃ 𝑡  ∈  𝐴 𝑎  ∈  ( [,] ‘ 𝑡 ) ) ) | 
						
							| 19 |  | ssrab2 | ⊢ { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ⊆  𝐴 | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  𝐴  ⊆  ran  𝐹 ) | 
						
							| 21 | 19 20 | sstrid | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ⊆  ran  𝐹 ) | 
						
							| 22 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  𝑡  ∈  𝐴 ) | 
						
							| 23 |  | ssid | ⊢ ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑡 ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑎  =  𝑡  →  ( [,] ‘ 𝑎 )  =  ( [,] ‘ 𝑡 ) ) | 
						
							| 25 | 24 | sseq2d | ⊢ ( 𝑎  =  𝑡  →  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 )  ↔  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑡 ) ) ) | 
						
							| 26 | 25 | rspcev | ⊢ ( ( 𝑡  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑡 ) )  →  ∃ 𝑎  ∈  𝐴 ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) ) | 
						
							| 27 | 22 23 26 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  ∃ 𝑎  ∈  𝐴 ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) ) | 
						
							| 28 |  | rabn0 | ⊢ ( { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ≠  ∅  ↔  ∃ 𝑎  ∈  𝐴 ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ≠  ∅ ) | 
						
							| 30 | 1 | dyadmax | ⊢ ( ( { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ⊆  ran  𝐹  ∧  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ≠  ∅ )  →  ∃ 𝑚  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) | 
						
							| 31 | 21 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  ∃ 𝑚  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑎  =  𝑚  →  ( [,] ‘ 𝑎 )  =  ( [,] ‘ 𝑚 ) ) | 
						
							| 33 | 32 | sseq2d | ⊢ ( 𝑎  =  𝑚  →  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 )  ↔  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) ) | 
						
							| 34 | 33 | elrab | ⊢ ( 𝑚  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ↔  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) ) | 
						
							| 35 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) | 
						
							| 36 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  𝑎  ∈  ( [,] ‘ 𝑡 ) ) | 
						
							| 37 | 35 36 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  𝑎  ∈  ( [,] ‘ 𝑚 ) ) | 
						
							| 38 |  | simprll | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  𝑚  ∈  𝐴 ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑎  =  𝑤  →  ( [,] ‘ 𝑎 )  =  ( [,] ‘ 𝑤 ) ) | 
						
							| 40 | 39 | sseq2d | ⊢ ( 𝑎  =  𝑤  →  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 )  ↔  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 ) ) ) | 
						
							| 41 | 40 | elrab | ⊢ ( 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  ↔  ( 𝑤  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 ) ) ) | 
						
							| 42 | 41 | imbi1i | ⊢ ( ( 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) )  ↔  ( ( 𝑤  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 ) )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 43 |  | impexp | ⊢ ( ( ( 𝑤  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 ) )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) )  ↔  ( 𝑤  ∈  𝐴  →  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) ) | 
						
							| 44 | 42 43 | bitri | ⊢ ( ( 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) )  ↔  ( 𝑤  ∈  𝐴  →  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) ) | 
						
							| 45 |  | impexp | ⊢ ( ( ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  ∧  ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 ) )  →  𝑚  =  𝑤 )  ↔  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 46 |  | sstr2 | ⊢ ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 ) ) ) | 
						
							| 47 | 46 | ad2antll | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 ) ) ) | 
						
							| 48 | 47 | ancrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  ∧  ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 ) ) ) ) | 
						
							| 49 | 48 | imim1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) )  →  ( ( ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  ∧  ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 ) )  →  𝑚  =  𝑤 )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 50 | 45 49 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) )  →  ( ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 51 | 50 | imim2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) )  →  ( ( 𝑤  ∈  𝐴  →  ( ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑤 )  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  ( 𝑤  ∈  𝐴  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) ) | 
						
							| 52 | 44 51 | biimtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) )  →  ( ( 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) )  →  ( 𝑤  ∈  𝐴  →  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) ) | 
						
							| 53 | 52 | ralimdv2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) ) )  →  ( ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 54 | 53 | impr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑧  =  𝑚  →  ( [,] ‘ 𝑧 )  =  ( [,] ‘ 𝑚 ) ) | 
						
							| 56 | 55 | sseq1d | ⊢ ( 𝑧  =  𝑚  →  ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  ↔  ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 ) ) ) | 
						
							| 57 |  | equequ1 | ⊢ ( 𝑧  =  𝑚  →  ( 𝑧  =  𝑤  ↔  𝑚  =  𝑤 ) ) | 
						
							| 58 | 56 57 | imbi12d | ⊢ ( 𝑧  =  𝑚  →  ( ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 59 | 58 | ralbidv | ⊢ ( 𝑧  =  𝑚  →  ( ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑧 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 60 | 59 2 | elrab2 | ⊢ ( 𝑚  ∈  𝐺  ↔  ( 𝑚  ∈  𝐴  ∧  ∀ 𝑤  ∈  𝐴 ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) ) | 
						
							| 61 | 38 54 60 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  𝑚  ∈  𝐺 ) | 
						
							| 62 |  | ffun | ⊢ ( [,] : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  →  Fun  [,] ) | 
						
							| 63 | 5 62 | ax-mp | ⊢ Fun  [,] | 
						
							| 64 | 2 | ssrab3 | ⊢ 𝐺  ⊆  𝐴 | 
						
							| 65 | 64 15 | sstrid | ⊢ ( 𝜑  →  𝐺  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 66 | 5 | fdmi | ⊢ dom  [,]  =  ( ℝ*  ×  ℝ* ) | 
						
							| 67 | 65 66 | sseqtrrdi | ⊢ ( 𝜑  →  𝐺  ⊆  dom  [,] ) | 
						
							| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  𝐺  ⊆  dom  [,] ) | 
						
							| 69 |  | funfvima2 | ⊢ ( ( Fun  [,]  ∧  𝐺  ⊆  dom  [,] )  →  ( 𝑚  ∈  𝐺  →  ( [,] ‘ 𝑚 )  ∈  ( [,]  “  𝐺 ) ) ) | 
						
							| 70 | 63 68 69 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  ( 𝑚  ∈  𝐺  →  ( [,] ‘ 𝑚 )  ∈  ( [,]  “  𝐺 ) ) ) | 
						
							| 71 | 61 70 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  ( [,] ‘ 𝑚 )  ∈  ( [,]  “  𝐺 ) ) | 
						
							| 72 |  | elunii | ⊢ ( ( 𝑎  ∈  ( [,] ‘ 𝑚 )  ∧  ( [,] ‘ 𝑚 )  ∈  ( [,]  “  𝐺 ) )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) | 
						
							| 73 | 37 71 72 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  ∧  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  ∧  ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 ) ) )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) | 
						
							| 74 | 73 | exp32 | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  ( ( 𝑚  ∈  𝐴  ∧  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑚 ) )  →  ( ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) ) ) | 
						
							| 75 | 34 74 | biimtrid | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  ( 𝑚  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) }  →  ( ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) ) ) | 
						
							| 76 | 75 | rexlimdv | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  ( ∃ 𝑚  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ∀ 𝑤  ∈  { 𝑎  ∈  𝐴  ∣  ( [,] ‘ 𝑡 )  ⊆  ( [,] ‘ 𝑎 ) } ( ( [,] ‘ 𝑚 )  ⊆  ( [,] ‘ 𝑤 )  →  𝑚  =  𝑤 )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) ) | 
						
							| 77 | 31 76 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐴  ∧  𝑎  ∈  ( [,] ‘ 𝑡 ) ) )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) | 
						
							| 78 | 77 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  𝐴 𝑎  ∈  ( [,] ‘ 𝑡 )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) ) | 
						
							| 79 | 18 78 | sylbid | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( [,]  “  𝐴 ) 𝑎  ∈  𝑖  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) ) | 
						
							| 80 | 4 79 | biimtrid | ⊢ ( 𝜑  →  ( 𝑎  ∈  ∪  ( [,]  “  𝐴 )  →  𝑎  ∈  ∪  ( [,]  “  𝐺 ) ) ) | 
						
							| 81 | 80 | ssrdv | ⊢ ( 𝜑  →  ∪  ( [,]  “  𝐴 )  ⊆  ∪  ( [,]  “  𝐺 ) ) | 
						
							| 82 |  | imass2 | ⊢ ( 𝐺  ⊆  𝐴  →  ( [,]  “  𝐺 )  ⊆  ( [,]  “  𝐴 ) ) | 
						
							| 83 | 64 82 | ax-mp | ⊢ ( [,]  “  𝐺 )  ⊆  ( [,]  “  𝐴 ) | 
						
							| 84 |  | uniss | ⊢ ( ( [,]  “  𝐺 )  ⊆  ( [,]  “  𝐴 )  →  ∪  ( [,]  “  𝐺 )  ⊆  ∪  ( [,]  “  𝐴 ) ) | 
						
							| 85 | 83 84 | mp1i | ⊢ ( 𝜑  →  ∪  ( [,]  “  𝐺 )  ⊆  ∪  ( [,]  “  𝐴 ) ) | 
						
							| 86 | 81 85 | eqssd | ⊢ ( 𝜑  →  ∪  ( [,]  “  𝐴 )  =  ∪  ( [,]  “  𝐺 ) ) |