Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
2 |
1
|
dyadval |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐵 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |
3 |
2
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) ) |
4 |
|
df-ov |
⊢ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |
5 |
3 4
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) ) = ( vol* ‘ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) ) |
7 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
8 |
|
2nn |
⊢ 2 ∈ ℕ |
9 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℕ ) |
10 |
8 9
|
mpan |
⊢ ( 𝐵 ∈ ℕ0 → ( 2 ↑ 𝐵 ) ∈ ℕ ) |
11 |
|
nndivre |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 2 ↑ 𝐵 ) ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) |
12 |
7 10 11
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) |
13 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
14 |
7 13
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) |
15 |
|
nndivre |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 ↑ 𝐵 ) ∈ ℕ ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) |
16 |
14 10 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) |
17 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
18 |
17
|
lep1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ≤ ( 𝐴 + 1 ) ) |
19 |
17 13
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
20 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℕ ) |
21 |
20
|
nnred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℝ ) |
22 |
20
|
nngt0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 0 < ( 2 ↑ 𝐵 ) ) |
23 |
|
lediv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐵 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐵 ) ) ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) |
24 |
17 19 21 22 23
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) |
25 |
18 24
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) |
26 |
|
ovolicc |
⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) → ( vol* ‘ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) = ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) ) |
27 |
12 16 25 26
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( vol* ‘ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) = ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) ) |
28 |
19
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 1 ) ∈ ℂ ) |
29 |
17
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
30 |
21
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℂ ) |
31 |
20
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ≠ 0 ) |
32 |
28 29 30 31
|
divsubdird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) / ( 2 ↑ 𝐵 ) ) = ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) ) |
33 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
34 |
|
pncan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 𝐴 ) = 1 ) |
35 |
29 33 34
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 1 ) − 𝐴 ) = 1 ) |
36 |
35
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) / ( 2 ↑ 𝐵 ) ) = ( 1 / ( 2 ↑ 𝐵 ) ) ) |
37 |
32 36
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) = ( 1 / ( 2 ↑ 𝐵 ) ) ) |
38 |
6 27 37
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) ) = ( 1 / ( 2 ↑ 𝐵 ) ) ) |