Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
2 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) |
3 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐵 ∈ ℤ ) |
4 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐷 ∈ ℕ0 ) |
5 |
1
|
dyadval |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0 ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
7 |
6
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) ) |
8 |
|
df-ov |
⊢ ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐷 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) 〉 ) |
9 |
7 8
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ) |
10 |
3
|
zred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐵 ∈ ℝ ) |
11 |
|
2nn |
⊢ 2 ∈ ℕ |
12 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐷 ∈ ℕ0 ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) |
13 |
11 4 12
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 2 ↑ 𝐷 ) ∈ ℕ ) |
14 |
10 13
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
15 |
|
peano2re |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) |
16 |
10 15
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 𝐵 + 1 ) ∈ ℝ ) |
17 |
16 13
|
nndivred |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) |
18 |
|
iccssre |
⊢ ( ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) ∈ ℝ ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ∈ ℝ ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ℝ ) |
19 |
14 17 18
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( ( 𝐵 / ( 2 ↑ 𝐷 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐷 ) ) ) ⊆ ℝ ) |
20 |
9 19
|
eqsstrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ℝ ) |
21 |
|
ovolss |
⊢ ( ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ∧ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ⊆ ℝ ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ) ≤ ( vol* ‘ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) ) |
22 |
2 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ) ≤ ( vol* ‘ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) ) |
23 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐴 ∈ ℤ ) |
24 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐶 ∈ ℕ0 ) |
25 |
1
|
dyadovol |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ) = ( 1 / ( 2 ↑ 𝐶 ) ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ) = ( 1 / ( 2 ↑ 𝐶 ) ) ) |
27 |
1
|
dyadovol |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0 ) → ( vol* ‘ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( 1 / ( 2 ↑ 𝐷 ) ) ) |
28 |
3 4 27
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( vol* ‘ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) = ( 1 / ( 2 ↑ 𝐷 ) ) ) |
29 |
22 26 28
|
3brtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 1 / ( 2 ↑ 𝐶 ) ) ≤ ( 1 / ( 2 ↑ 𝐷 ) ) ) |
30 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
31 |
11 24 30
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
32 |
|
nnre |
⊢ ( ( 2 ↑ 𝐷 ) ∈ ℕ → ( 2 ↑ 𝐷 ) ∈ ℝ ) |
33 |
|
nngt0 |
⊢ ( ( 2 ↑ 𝐷 ) ∈ ℕ → 0 < ( 2 ↑ 𝐷 ) ) |
34 |
32 33
|
jca |
⊢ ( ( 2 ↑ 𝐷 ) ∈ ℕ → ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ) |
35 |
|
nnre |
⊢ ( ( 2 ↑ 𝐶 ) ∈ ℕ → ( 2 ↑ 𝐶 ) ∈ ℝ ) |
36 |
|
nngt0 |
⊢ ( ( 2 ↑ 𝐶 ) ∈ ℕ → 0 < ( 2 ↑ 𝐶 ) ) |
37 |
35 36
|
jca |
⊢ ( ( 2 ↑ 𝐶 ) ∈ ℕ → ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) |
38 |
|
lerec |
⊢ ( ( ( ( 2 ↑ 𝐷 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐷 ) ) ∧ ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) → ( ( 2 ↑ 𝐷 ) ≤ ( 2 ↑ 𝐶 ) ↔ ( 1 / ( 2 ↑ 𝐶 ) ) ≤ ( 1 / ( 2 ↑ 𝐷 ) ) ) ) |
39 |
34 37 38
|
syl2an |
⊢ ( ( ( 2 ↑ 𝐷 ) ∈ ℕ ∧ ( 2 ↑ 𝐶 ) ∈ ℕ ) → ( ( 2 ↑ 𝐷 ) ≤ ( 2 ↑ 𝐶 ) ↔ ( 1 / ( 2 ↑ 𝐶 ) ) ≤ ( 1 / ( 2 ↑ 𝐷 ) ) ) ) |
40 |
13 31 39
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( ( 2 ↑ 𝐷 ) ≤ ( 2 ↑ 𝐶 ) ↔ ( 1 / ( 2 ↑ 𝐶 ) ) ≤ ( 1 / ( 2 ↑ 𝐷 ) ) ) ) |
41 |
29 40
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 2 ↑ 𝐷 ) ≤ ( 2 ↑ 𝐶 ) ) |
42 |
|
2re |
⊢ 2 ∈ ℝ |
43 |
42
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 2 ∈ ℝ ) |
44 |
4
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐷 ∈ ℤ ) |
45 |
24
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐶 ∈ ℤ ) |
46 |
|
1lt2 |
⊢ 1 < 2 |
47 |
46
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 1 < 2 ) |
48 |
43 44 45 47
|
leexp2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → ( 𝐷 ≤ 𝐶 ↔ ( 2 ↑ 𝐷 ) ≤ ( 2 ↑ 𝐶 ) ) ) |
49 |
41 48
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) → 𝐷 ≤ 𝐶 ) |
50 |
49
|
ex |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) → 𝐷 ≤ 𝐶 ) ) |