| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ ,  𝑦  ∈  ℕ0  ↦  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉 ) | 
						
							| 2 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 2 ↑ 𝑦 )  =  ( 2 ↑ 𝐵 ) ) | 
						
							| 4 | 2 3 | oveqan12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  /  ( 2 ↑ 𝑦 ) )  =  ( 𝐴  /  ( 2 ↑ 𝐵 ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  +  1 )  =  ( 𝐴  +  1 ) ) | 
						
							| 6 | 5 3 | oveqan12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) )  =  ( ( 𝐴  +  1 )  /  ( 2 ↑ 𝐵 ) ) ) | 
						
							| 7 | 4 6 | opeq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  〈 ( 𝑥  /  ( 2 ↑ 𝑦 ) ) ,  ( ( 𝑥  +  1 )  /  ( 2 ↑ 𝑦 ) ) 〉  =  〈 ( 𝐴  /  ( 2 ↑ 𝐵 ) ) ,  ( ( 𝐴  +  1 )  /  ( 2 ↑ 𝐵 ) ) 〉 ) | 
						
							| 8 |  | opex | ⊢ 〈 ( 𝐴  /  ( 2 ↑ 𝐵 ) ) ,  ( ( 𝐴  +  1 )  /  ( 2 ↑ 𝐵 ) ) 〉  ∈  V | 
						
							| 9 | 7 1 8 | ovmpoa | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴 𝐹 𝐵 )  =  〈 ( 𝐴  /  ( 2 ↑ 𝐵 ) ) ,  ( ( 𝐴  +  1 )  /  ( 2 ↑ 𝐵 ) ) 〉 ) |