Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
2 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
3 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 2 ↑ 𝑦 ) = ( 2 ↑ 𝐵 ) ) |
4 |
2 3
|
oveqan12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) = ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 1 ) = ( 𝐴 + 1 ) ) |
6 |
5 3
|
oveqan12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) |
7 |
4 6
|
opeq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |
8 |
|
opex |
⊢ 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ∈ V |
9 |
7 1 8
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐵 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |