Metamath Proof Explorer


Theorem e01

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e01.1 𝜑
e01.2 (    𝜓    ▶    𝜒    )
e01.3 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion e01 (    𝜓    ▶    𝜃    )

Proof

Step Hyp Ref Expression
1 e01.1 𝜑
2 e01.2 (    𝜓    ▶    𝜒    )
3 e01.3 ( 𝜑 → ( 𝜒𝜃 ) )
4 1 vd01 (    𝜓    ▶    𝜑    )
5 4 2 3 e11 (    𝜓    ▶    𝜃    )