Metamath Proof Explorer


Theorem e010

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e010.1 𝜑
e010.2 (    𝜓    ▶    𝜒    )
e010.3 𝜃
e010.4 ( 𝜑 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion e010 (    𝜓    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e010.1 𝜑
2 e010.2 (    𝜓    ▶    𝜒    )
3 e010.3 𝜃
4 e010.4 ( 𝜑 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 1 vd01 (    𝜓    ▶    𝜑    )
6 3 vd01 (    𝜓    ▶    𝜃    )
7 5 2 6 4 e111 (    𝜓    ▶    𝜏    )