Metamath Proof Explorer


Theorem e011

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e011.1 𝜑
e011.2 (    𝜓    ▶    𝜒    )
e011.3 (    𝜓    ▶    𝜃    )
e011.4 ( 𝜑 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion e011 (    𝜓    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e011.1 𝜑
2 e011.2 (    𝜓    ▶    𝜒    )
3 e011.3 (    𝜓    ▶    𝜃    )
4 e011.4 ( 𝜑 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 1 vd01 (    𝜓    ▶    𝜑    )
6 5 2 3 4 e111 (    𝜓    ▶    𝜏    )