Metamath Proof Explorer


Theorem e012

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e012.1 𝜑
e012.2 (    𝜓    ▶    𝜒    )
e012.3 (    𝜓    ,    𝜃    ▶    𝜏    )
e012.4 ( 𝜑 → ( 𝜒 → ( 𝜏𝜂 ) ) )
Assertion e012 (    𝜓    ,    𝜃    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e012.1 𝜑
2 e012.2 (    𝜓    ▶    𝜒    )
3 e012.3 (    𝜓    ,    𝜃    ▶    𝜏    )
4 e012.4 ( 𝜑 → ( 𝜒 → ( 𝜏𝜂 ) ) )
5 1 vd01 (    𝜓    ▶    𝜑    )
6 5 2 3 4 e112 (    𝜓    ,    𝜃    ▶    𝜂    )