Metamath Proof Explorer
		
		
		
		Description:  Conjunction form of e03 .  (Contributed by Alan Sare, 12-Jun-2011)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | e03an.1 | ⊢ 𝜑 | 
					
						|  |  | e03an.2 | ⊢ (    𝜓    ,    𝜒    ,    𝜃    ▶    𝜏    ) | 
					
						|  |  | e03an.3 | ⊢ ( ( 𝜑  ∧  𝜏 )  →  𝜂 ) | 
				
					|  | Assertion | e03an | ⊢  (    𝜓    ,    𝜒    ,    𝜃    ▶    𝜂    ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | e03an.1 | ⊢ 𝜑 | 
						
							| 2 |  | e03an.2 | ⊢ (    𝜓    ,    𝜒    ,    𝜃    ▶    𝜏    ) | 
						
							| 3 |  | e03an.3 | ⊢ ( ( 𝜑  ∧  𝜏 )  →  𝜂 ) | 
						
							| 4 | 3 | ex | ⊢ ( 𝜑  →  ( 𝜏  →  𝜂 ) ) | 
						
							| 5 | 1 2 4 | e03 | ⊢ (    𝜓    ,    𝜒    ,    𝜃    ▶    𝜂    ) |