Metamath Proof Explorer


Theorem e101

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e101.1 (    𝜑    ▶    𝜓    )
e101.2 𝜒
e101.3 (    𝜑    ▶    𝜃    )
e101.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion e101 (    𝜑    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e101.1 (    𝜑    ▶    𝜓    )
2 e101.2 𝜒
3 e101.3 (    𝜑    ▶    𝜃    )
4 e101.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 2 vd01 (    𝜑    ▶    𝜒    )
6 1 5 3 4 e111 (    𝜑    ▶    𝜏    )