Metamath Proof Explorer


Theorem e102

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e102.1 (    𝜑    ▶    𝜓    )
e102.2 𝜒
e102.3 (    𝜑    ,    𝜃    ▶    𝜏    )
e102.4 ( 𝜓 → ( 𝜒 → ( 𝜏𝜂 ) ) )
Assertion e102 (    𝜑    ,    𝜃    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e102.1 (    𝜑    ▶    𝜓    )
2 e102.2 𝜒
3 e102.3 (    𝜑    ,    𝜃    ▶    𝜏    )
4 e102.4 ( 𝜓 → ( 𝜒 → ( 𝜏𝜂 ) ) )
5 2 vd01 (    𝜑    ▶    𝜒    )
6 1 5 3 4 e112 (    𝜑    ,    𝜃    ▶    𝜂    )