Metamath Proof Explorer


Theorem e11

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e11.1 (    𝜑    ▶    𝜓    )
e11.2 (    𝜑    ▶    𝜒    )
e11.3 ( 𝜓 → ( 𝜒𝜃 ) )
Assertion e11 (    𝜑    ▶    𝜃    )

Proof

Step Hyp Ref Expression
1 e11.1 (    𝜑    ▶    𝜓    )
2 e11.2 (    𝜑    ▶    𝜒    )
3 e11.3 ( 𝜓 → ( 𝜒𝜃 ) )
4 3 a1i ( 𝜓 → ( 𝜓 → ( 𝜒𝜃 ) ) )
5 1 1 2 4 e111 (    𝜑    ▶    𝜃    )