Metamath Proof Explorer


Theorem e110

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e110.1 (    𝜑    ▶    𝜓    )
e110.2 (    𝜑    ▶    𝜒    )
e110.3 𝜃
e110.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion e110 (    𝜑    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e110.1 (    𝜑    ▶    𝜓    )
2 e110.2 (    𝜑    ▶    𝜒    )
3 e110.3 𝜃
4 e110.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 3 vd01 (    𝜑    ▶    𝜃    )
6 1 2 5 4 e111 (    𝜑    ▶    𝜏    )