Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e111
Metamath Proof Explorer
Description: A virtual deduction elimination rule (see syl3c ). (Contributed by Alan Sare , 14-Jun-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e111.1
⊢ ( 𝜑 ▶ 𝜓 )
e111.2
⊢ ( 𝜑 ▶ 𝜒 )
e111.3
⊢ ( 𝜑 ▶ 𝜃 )
e111.4
⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) )
Assertion
e111
⊢ ( 𝜑 ▶ 𝜏 )
Proof
Step
Hyp
Ref
Expression
1
e111.1
⊢ ( 𝜑 ▶ 𝜓 )
2
e111.2
⊢ ( 𝜑 ▶ 𝜒 )
3
e111.3
⊢ ( 𝜑 ▶ 𝜃 )
4
e111.4
⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) )
5
3
in1
⊢ ( 𝜑 → 𝜃 )
6
1
in1
⊢ ( 𝜑 → 𝜓 )
7
2
in1
⊢ ( 𝜑 → 𝜒 )
8
6 7 4
syl2im
⊢ ( 𝜑 → ( 𝜑 → ( 𝜃 → 𝜏 ) ) )
9
8
pm2.43i
⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) )
10
5 9
syl5com
⊢ ( 𝜑 → ( 𝜑 → 𝜏 ) )
11
10
pm2.43i
⊢ ( 𝜑 → 𝜏 )
12
11
dfvd1ir
⊢ ( 𝜑 ▶ 𝜏 )