Metamath Proof Explorer


Theorem e112

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e112.1 (    𝜑    ▶    𝜓    )
e112.2 (    𝜑    ▶    𝜒    )
e112.3 (    𝜑    ,    𝜃    ▶    𝜏    )
e112.4 ( 𝜓 → ( 𝜒 → ( 𝜏𝜂 ) ) )
Assertion e112 (    𝜑    ,    𝜃    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e112.1 (    𝜑    ▶    𝜓    )
2 e112.2 (    𝜑    ▶    𝜒    )
3 e112.3 (    𝜑    ,    𝜃    ▶    𝜏    )
4 e112.4 ( 𝜓 → ( 𝜒 → ( 𝜏𝜂 ) ) )
5 1 vd12 (    𝜑    ,    𝜃    ▶    𝜓    )
6 2 vd12 (    𝜑    ,    𝜃    ▶    𝜒    )
7 5 6 3 4 e222 (    𝜑    ,    𝜃    ▶    𝜂    )