Metamath Proof Explorer


Theorem e11an

Description: Conjunction form of e11 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e11an.1 (    𝜑    ▶    𝜓    )
e11an.2 (    𝜑    ▶    𝜒    )
e11an.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion e11an (    𝜑    ▶    𝜃    )

Proof

Step Hyp Ref Expression
1 e11an.1 (    𝜑    ▶    𝜓    )
2 e11an.2 (    𝜑    ▶    𝜒    )
3 e11an.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 3 ex ( 𝜓 → ( 𝜒𝜃 ) )
5 1 2 4 e11 (    𝜑    ▶    𝜃    )