Metamath Proof Explorer


Theorem e123

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e123.1 (    𝜑    ▶    𝜓    )
e123.2 (    𝜑    ,    𝜒    ▶    𝜃    )
e123.3 (    𝜑    ,    𝜒    ,    𝜏    ▶    𝜂    )
e123.4 ( 𝜓 → ( 𝜃 → ( 𝜂𝜁 ) ) )
Assertion e123 (    𝜑    ,    𝜒    ,    𝜏    ▶    𝜁    )

Proof

Step Hyp Ref Expression
1 e123.1 (    𝜑    ▶    𝜓    )
2 e123.2 (    𝜑    ,    𝜒    ▶    𝜃    )
3 e123.3 (    𝜑    ,    𝜒    ,    𝜏    ▶    𝜂    )
4 e123.4 ( 𝜓 → ( 𝜃 → ( 𝜂𝜁 ) ) )
5 1 vd13 (    𝜑    ,    𝜒    ,    𝜏    ▶    𝜓    )
6 2 vd23 (    𝜑    ,    𝜒    ,    𝜏    ▶    𝜃    )
7 5 6 3 4 e333 (    𝜑    ,    𝜒    ,    𝜏    ▶    𝜁    )