Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e123
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 12-Jun-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e123.1
⊢ ( 𝜑 ▶ 𝜓 )
e123.2
⊢ ( 𝜑 , 𝜒 ▶ 𝜃 )
e123.3
⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜂 )
e123.4
⊢ ( 𝜓 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) )
Assertion
e123
⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜁 )
Proof
Step
Hyp
Ref
Expression
1
e123.1
⊢ ( 𝜑 ▶ 𝜓 )
2
e123.2
⊢ ( 𝜑 , 𝜒 ▶ 𝜃 )
3
e123.3
⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜂 )
4
e123.4
⊢ ( 𝜓 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) )
5
1
vd13
⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜓 )
6
2
vd23
⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜃 )
7
5 6 3 4
e333
⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜁 )