Metamath Proof Explorer


Theorem e1a

Description: A Virtual deduction elimination rule. syl is e1a without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1a.1 (    𝜑    ▶    𝜓    )
e1a.2 ( 𝜓𝜒 )
Assertion e1a (    𝜑    ▶    𝜒    )

Proof

Step Hyp Ref Expression
1 e1a.1 (    𝜑    ▶    𝜓    )
2 e1a.2 ( 𝜓𝜒 )
3 1 in1 ( 𝜑𝜓 )
4 3 2 syl ( 𝜑𝜒 )
5 4 dfvd1ir (    𝜑    ▶    𝜒    )