Metamath Proof Explorer


Theorem e1bi

Description: Biconditional form of e1a . sylib is e1bi without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1bi.1 (    𝜑    ▶    𝜓    )
e1bi.2 ( 𝜓𝜒 )
Assertion e1bi (    𝜑    ▶    𝜒    )

Proof

Step Hyp Ref Expression
1 e1bi.1 (    𝜑    ▶    𝜓    )
2 e1bi.2 ( 𝜓𝜒 )
3 2 biimpi ( 𝜓𝜒 )
4 1 3 e1a (    𝜑    ▶    𝜒    )