Metamath Proof Explorer


Theorem e201

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e201.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e201.2 𝜃
e201.3 (    𝜑    ▶    𝜏    )
e201.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion e201 (    𝜑    ,    𝜓    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e201.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e201.2 𝜃
3 e201.3 (    𝜑    ▶    𝜏    )
4 e201.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 2 vd01 (    𝜑    ▶    𝜃    )
6 1 5 3 4 e211 (    𝜑    ,    𝜓    ▶    𝜂    )