Metamath Proof Explorer


Theorem e20an

Description: Conjunction form of e20 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e20an.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e20an.2 𝜃
e20an.3 ( ( 𝜒𝜃 ) → 𝜏 )
Assertion e20an (    𝜑    ,    𝜓    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e20an.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e20an.2 𝜃
3 e20an.3 ( ( 𝜒𝜃 ) → 𝜏 )
4 3 ex ( 𝜒 → ( 𝜃𝜏 ) )
5 1 2 4 e20 (    𝜑    ,    𝜓    ▶    𝜏    )