Metamath Proof Explorer
		
		
		
		Description:  Conjunction form of e20 .  (Contributed by Alan Sare, 15-Jun-2011)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | e20an.1 | ⊢ (    𝜑    ,    𝜓    ▶    𝜒    ) | 
					
						|  |  | e20an.2 | ⊢ 𝜃 | 
					
						|  |  | e20an.3 | ⊢ ( ( 𝜒  ∧  𝜃 )  →  𝜏 ) | 
				
					|  | Assertion | e20an | ⊢  (    𝜑    ,    𝜓    ▶    𝜏    ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | e20an.1 | ⊢ (    𝜑    ,    𝜓    ▶    𝜒    ) | 
						
							| 2 |  | e20an.2 | ⊢ 𝜃 | 
						
							| 3 |  | e20an.3 | ⊢ ( ( 𝜒  ∧  𝜃 )  →  𝜏 ) | 
						
							| 4 | 3 | ex | ⊢ ( 𝜒  →  ( 𝜃  →  𝜏 ) ) | 
						
							| 5 | 1 2 4 | e20 | ⊢ (    𝜑    ,    𝜓    ▶    𝜏    ) |