Metamath Proof Explorer


Theorem e210

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e210.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e210.2 (    𝜑    ▶    𝜃    )
e210.3 𝜏
e210.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion e210 (    𝜑    ,    𝜓    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e210.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e210.2 (    𝜑    ▶    𝜃    )
3 e210.3 𝜏
4 e210.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 3 vd01 (    𝜑    ▶    𝜏    )
6 1 2 5 4 e211 (    𝜑    ,    𝜓    ▶    𝜂    )